Skip to main content
Log in

Stressor Controllability, Anxiety, and Serotonin

  • Published:
Cognitive Therapy and Research Aims and scope Submit manuscript

Abstract

It is argued that exposure to stressors cansensitize the neural machinery that mediates fear for aperiod of time, and that during this time period fearconditioning is potentiated and responses to ambiguous or mildly fearful stimuli are exaggerated. Thecontrollability of the stressor is a key characteristicof the stressor which determines whether thissensitization occurs. That is, sensitization follows exposure to uncontrollable, but not tocontrollable, stressors. It is argued that thissensitization of the neural structures that mediate fearmay be similar to what is meant by anxiety, and thatbrain serotonin systems are a key component of thissensitization process. The implications of this point ofview for a variety of phenomena including learnedhelplessness and reactivity to drugs of abuse are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anisman, H., Zalcman, S., Shanks, N., & Zacharko, R. M. (1991). Multisystem regulation of performance deficits induced by stressors: An animal model of depression. Clifton, NJ: Humana Press.

    Google Scholar 

  • Behbehani, M. M. (1995). Functional characteristics of the midbrain periaqueductal gray. Progress in Neurobiology, 46, 575–605.

    Article  PubMed  Google Scholar 

  • Blanchard, D. C., & Blanchard, R. J. (1972). Innate and conditioned reactions to threat in rats with amygdaloid lesions. Journal of Comparative Physiology and Psychology, 81, 281–290.

    Google Scholar 

  • Blanchard, D. C., & Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Palo Alto, CA: Annual Reviews.

    Google Scholar 

  • Bolles, R. C., & Fanselow, M. S. (1980). A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences, 3, 291–301.

    Google Scholar 

  • Campeau, S., Hayward, M. D., Hope, B. T., Rosen, J. B., Nestler, E. J., & Davis, M. (1991). Induction of c-fosproto-oncogene in rat amygdala during unconditioned and conditioned fear. Brain Research, 565, 349–352.

    Article  PubMed  Google Scholar 

  • Costa, E., & Guidotti, A. (1991). Diazepam binding inhibitor (DBI): A peptide with multiple biological actions. Life Science, 49, 325–344.

    Article  Google Scholar 

  • Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.

    Article  PubMed  Google Scholar 

  • Davis, M., Cassella, J. V., & Kehne, J. H. (1988). Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated startle paradigm: Comparison with 8-OHDPAT and ipsapirone. Psvchopharmacology, 94, 14–20.

    Google Scholar 

  • DeVry, J. ( 1995). 5-HT1A receptor agonists: Recent developments and controversial issues. Psychopharmacology, 121, 1–26.

    PubMed  Google Scholar 

  • Desiderato, O., & Newman, A. (1971). Conditioned suppression produced in rats by tones paired with escapable or inescapable shock. Journal of Comparative Physiology and Psychology, 77, 427–443.

    Google Scholar 

  • Dess, N.K., Minor, T. R., & Brewer, J. (1989). Suppression of feeding and body weight by inescapable shock: Modulation by quinine adulteration, stress reinstatement, and stressor controllability. Physiology and Behavior, 45, 975–983.

    Article  PubMed  Google Scholar 

  • Dorow, R. (1982). b-carboline monomethylamide causes anxiety in man. CINP Congress Jerusalem, 13, 176.

    Google Scholar 

  • Drugan, R. C., & Holmes, P. V. (1991). Central and peripheral benzodiazepine receptors: Involvement in an organism's response to physical and psychological stress. Neuroscience and Biobehavioral Reviews, 15, 277–298.

    PubMed  Google Scholar 

  • Drugan, R. C., Morrow, A. L., Weizman, R., Weizman, A., Deutsch, S. I., Crawley, J. N., & Paul, S. M. (1989). Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Research, 487, 45–51.

    Article  PubMed  Google Scholar 

  • Drugan, R. C., Ryan, S. M., Minor, T. R., & Maier, S. F. (1984). Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacology Biochemistry and Behavior, 21, 749–754.

    Google Scholar 

  • Duxon, M. S., Flanigan, T. P., Reavley, A. C., Baxter, G. S., Blackburn, T. P., & Fone, K. C. (1997). Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience, 76, 323–329.

    Article  PubMed  Google Scholar 

  • Edwards, E., Harkins, K., Wright, G., & Henn, F. (1991). Modulation of [3H]paroxetine binding to the 5-hydroxytryptamine uptake site in an animal model of depression. Journal of Neurochemistry, 56, 1581–1586.

    PubMed  Google Scholar 

  • Fanselow, M. S. (1991). The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. New York: Plenum Press.

    Google Scholar 

  • Fanselow, M. S., & Lester, L. S. (1988). A function al behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • File, S. E. (1980). The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drug. Journal of Neuroscience Methods, 2, 219–238.

    Article  PubMed  Google Scholar 

  • File, S. F. (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: Social behavior. Neuropsychobiology, 13, 55–62.

    PubMed  Google Scholar 

  • Gleitman, H., & Holmes, P. A. (1967). Retention of incompletely learned CER in rats. Psychonomic Science, 7, 19–20.

    Google Scholar 

  • Gloor, P., Olivier, A., Aiesney, L. F., Andermann, F., & Horowitz, S. (1982). The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Annals of Neurology, 12, 129–144.

    PubMed  Google Scholar 

  • Gonzalez, L. E., Andrews, N., & File, S. E. (1996). 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Research, 732, 145–153.

    Article  PubMed  Google Scholar 

  • Graeff, F. G., Guimaraes, F. S., De Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology, Biochemistry and Behavior, 54, 129–141.

    Google Scholar 

  • Handley, S. L. (1995). 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacology and Therapeutics, 66, 103–148.

    Article  PubMed  Google Scholar 

  • Heidenrich, B. A., Basse-Tomusk, A. E., & Rebec, C. V. (1987). Serotonergic dorsal rapheneurons: Subsensitivity to amphetamine with long-term treatment. Neuropharmacology, 26, 719–724.

    Article  PubMed  Google Scholar 

  • Higgins, G., Jones, B., Oakley, N., & Tyers, M. (1991). Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3 receptor antagonists. Psychopharmacology, 104, 545–551.

    PubMed  Google Scholar 

  • Higgins, G. A., Bradbury, A. J., Jones, B. J., & Oakley, N. R. (1988). Behavioral and biochemical consequences following activation of 5-HT1-like and GABA receptors in the dorsal raphe nucleus of the rat. Neuropharmacology, 27, 993–1001.

    Article  PubMed  Google Scholar 

  • Hindley, S. W., Hobbs, A., Paterson, I. A., & Roberts, M. H. T. (1985). The effects of methyl b-carboline-3-carboxylate on social interaction and locomotor activity when microinjected into the nucleus raphé dorsalis of the rat. British Journal of Pharmacology, 86, 753–761.

    PubMed  Google Scholar 

  • Hitchcock, J. M., & Davis, M. (1986). Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behavioral Neuroscience, 100, 11–22.

    Article  PubMed  Google Scholar 

  • Hodges, H., Green, S., & Glenn, B. (1987). Evidence that the amygdala is involved in benzodiazepine and serotonergic effects on punished responding but not on discrimination. Psychopharmacology, 92, 491–504.

    Article  PubMed  Google Scholar 

  • Iversen, S. D. (1984). 5-HT and anxiety. Neuropharmacology, 23, 1553–1560.

    Article  PubMed  Google Scholar 

  • Jacobs, B. L., & Fornal, C. A. (1993). 5-HT and motor control: A hypothesis. Trends in Neuroscience, 16, 346–352.

    Article  Google Scholar 

  • Job, R. F., & Barnes, B. W. (1995). Stress and consumption: Inescapable shock, neophobia, and quinine finickiness in rats. Behavioral Neuroscience, 109, 106–116.

    Article  PubMed  Google Scholar 

  • Jones, B. J., Paterson, I. A., & Roberts, M. H. T. (1986). Microinjections of methyl-b-carboline-3-carboxylate into the dorsal raphé nucleus: Behavioral consequences. Pharmacology, Biochemistry and Behavior, 24, 1487–1489.

    Google Scholar 

  • Kennett, G. A., Marcou, M., Dourish, C. T., & Curzon, G. (1987). Single administration of 5-HT1A agonists de crease 5-HT1A presynaptic, but not postsynaptic receptor mediated responses: Relationship to antidepressant-like actions. European Journal of Pharmacology, 138, 56–60.

    Article  Google Scholar 

  • LeDoux, J. E. (1995). Emotion: clues from the brain. Annual Review of Psychology, 46, 209–235.

    Article  PubMed  Google Scholar 

  • LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned ear. Journal of Neuroscience, 8, 2517–2519.

    PubMed  Google Scholar 

  • Lee, R. K. K., & Maier, S. F. (1988). Inescapable shock and attention to internal versus external cues in a water escape discrimination task. Journal of Experimental Psychology: Animal Behavior Processes, 14, 302–311.

    Article  Google Scholar 

  • Lista, A., Blier, P., & de Montigny, C. (1990). Benzodiaze pine receptors modulate 5-HT neurotransmission in the rat hippocampus: In vivo electrophysiological evidence. Journal of Pharmacology and Experimental Therapeutics, 254, 318–323.

    PubMed  Google Scholar 

  • Ma, Q. T., Yin, G. F., Ai, M. K., & Han, J. S. (1991). Serotonergic projections from the nucleus raphe dorsalis to the amygdala in the rat. Neuroscience Letters, 134, 21–24.

    Article  PubMed  Google Scholar 

  • Maier, S. F. (1990a). Diazepam modulation of stress-induced analgesia depends on the type of analgesia. Behavioral Neuroscience, 104, 337–345.

    Google Scholar 

  • Maier, S. F. (1990b). The role of fear in mediating the shuttle escape learning deficit produced by inescapable shock. Journal of Experimental Psychology: Animal Behavior Processes, 16, 137–150.

    Article  Google Scholar 

  • Maier, S. F. (1993). Learne d helplessness, fear and anxiety. In C. Stanford & P. Salmon (Eds.), Stress: From synapse to syndrome(pp. 207–248). San Diego, CA: Academic Press.

    Google Scholar 

  • Maier, S. F., Busch, C. R., Maswood, S., Grahn, R. E., & Watkins, L. R. (1995). The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behavioral Neuroscience, 109, 759–766.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Grahn, R. E., Kalman, B. A., Sutton, L. C., Wiertelak, E. P., & Watkins, L. R. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107, 377–388.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Grahn, R. E., Maswood, S., & Watkins, L. R. (1995). The benzodiaze pine receptor antagonist flumazenil and CGS8216 block the enhancement of fear conditioning 26 and interference with escape behavior produced by inescapable shock. Psychopharmacology, 121, 250–259.

    PubMed  Google Scholar 

  • Maier, S. F., Grahn, R. E., & Watkins, L. R. (1995). 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhanced fear conditioning and the interference with escape produced by exposure to inescapable shock. Behavioral Neuroscience, 109, 404–412.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Kalman, B. A., & Grahn, R. E. (1994). Chlordiazepoxide microinjected into the region of the dorsal raphe nucleus eliminates the interference with escape responding produced by inescapable shock whether administered before inescapable shock or escape testing. Behavioral Neuroscience, 108, 121–130.

    Article  PubMed  Google Scholar 

  • Maier, S. F., & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105, 3–46.

    Article  Google Scholar 

  • Martin, I. L. (1987). The benzodiazepines and their receptors: 25 years of progress. Neuropharmacology, 26, 957–970.

    Article  PubMed  Google Scholar 

  • Maswood, S., Barter, J. E., Watkins, L. R., & Maier, S. F. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphé nucleus of the rat. Brain Research, 783,115–120.

    Article  PubMed  Google Scholar 

  • Matos, F. F., Urban, C., & Yocca, F. D. (1996). Serotonin (5-HT) release in the dorsal raphé and ventral hippocampus: Raphé control of somatodendritic and terminal 5-HT release. Journal of Neural Transmission, 103, 173–190.

    PubMed  Google Scholar 

  • Mineka, S. (1985). Animal models of anxiety-based disorders: Their usefulness and limitations. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Mineka, S., Cook, M., & Miller, S. (1984). Fear conditioned with escapable and inescapable shock: The effects of a feedback stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 10, 307–323.

    Article  Google Scholar 

  • Mineka, S., Davidson, M., Cook, M., & Kier, R. (1984). Observational conditioning of snake fear in rhesus monkeys. Journal of Abnormal Psychology, 93, 355–372.

    Article  PubMed  Google Scholar 

  • Minor, T. R. (1990). Conditioned fear and neophobia following inescapable shock. Animal Learning and Behavior, 18, 222–226.

    Google Scholar 

  • Mowrer, O. H., & Viek, P. (1948). An experimental analogue of fear from a sense of helplessness. Journal of Abnormal and Social Psychology, 83, 193–200.

    Google Scholar 

  • Ninan, Pe, Insel, T., Cohen, R., Cook, J., Skolnick, P., & Paul, S. M. (1982). Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science, 218, 1332–1334.

    PubMed  Google Scholar 

  • Pei, Q., Zetterstrom, T., & Fillenz, M. (1989). Both systemic and local administration of benzodiazepine agonists inhibit the in vivo release of 5-HT from ventral hippocampus. Neuropharmacology, 28, 1061–1066.

    Article  PubMed  Google Scholar 

  • Peterson, C., Maier, S. F., & Seligman, M. E. P. (1993). Learned helplessness. New York: Oxford University Press.

    Google Scholar 

  • Petty, F., Kramer, G., Wilson, L., & Jordan, L. (1992). Prevention of learned helplessness: In vivo correlations with cortical serotonin. Psychiatric Research, 52, 285–293.

    Article  Google Scholar 

  • Radja, F., Laporte, A. M., Daval, G., Vergé, D., Gozlan, H., & Hamon, M. (1991). Autoradiography of serotonin receptor subtypes in the central nervous system. Neurochemistry International, 18, 1–15.

    Article  Google Scholar 

  • Rapaport, P. M., & Maier, S. F. (1978). Inescapable shock and food competition dominance in rats. Animal Learning and Behavior, 6, 160–165.

    Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive sensitization theory of addiction. Brain Research Review, 18, 247–291.

    Article  Google Scholar 

  • Short, K. R., & Maier, S. F. (1993). Stressor controllability, social interaction, and benzodiazepine systems. Pharmacology, Biochemistry and Behavior, 45, 1–9.

    Google Scholar 

  • Steinbusch, H. M. W., & Nieuwenhuys, R. (1983). The raphé nuclei of the rat brain stem: A cytoarchitectonic and immunohistochemical study. New York: Raven Press.

    Google Scholar 

  • Tao, R., & Auerbach, S. B. (1994). Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. Journal of Neurochemistry, 63, 517–524.

    PubMed  Google Scholar 

  • van der Kolk, B. A. (1988). The trauma spectrum: The interaction of biological and social events in the genesis of the trauma response. Journal of Trauma and Stress, 1, 279–290.

    Google Scholar 

  • Weiss, J. M., Goodman, P. A., Losito, B. G., Corrigan, S., Charry, J. M., & Bailey, W. H. (1981). Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Research, 3, 167–205.

    Article  Google Scholar 

  • Will, M. J., Watkins, L. R., & Maier, S. F. (1998). Uncontrollable stressors potentiate the rewarding properties of morphine. Pharmacology, Biochemistry, and Behavior, 60,655–664.

    Google Scholar 

  • Williams, J. L., & Groux, M. L. (1993). Exposure to various stressors alters preferences for natural odors in rats (Rattus norvegicus). Journal of Comparative Psychology, 107, 39–47.

    PubMed  Google Scholar 

  • Yoshimoto, K., & McBride, W. J. (1993). Regulation of nucleus accumbens dopamine release by the dorsal raphe nucleus in the rat. Neurochemical Research, 17, 401–407.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, S.F., Watkins, L.R. Stressor Controllability, Anxiety, and Serotonin. Cognitive Therapy and Research 22, 595–613 (1998). https://doi.org/10.1023/A:1018794104325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018794104325

Navigation