Skip to main content
Log in

Functional Culture Models to Study Mechanisms Governing Apoptosis in Normal and Malignant Mammary Epithelial Cells

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary tissue homeostasis depends upon dynamicinteractions between the epithelial cells, theirmicroenvironment (including the basement membrane andthe stroma), and the tissue architecture, whichinfluence each other reciprocally to regulate growth,death and differentiation in the gland. To study howapoptosis is regulated in normal mammary cells, and tounderstand its role in breast tumor pathogenesis, we need model systems that recapitulate breasttissue architecture and microenvironment in culture. Wehave established culture models of primary andestablished nonmalignant mammary cell lines from both rodent and human, and defined procedures tostudy how cell and tissue architecture affect signalingby the basement membrane. We show that both a basementmembrane and an organized tissue structure are required to achieve sustained mammary cellsurvival. These models could now be used to investigatehow the basement membrane represses apoptosis in normalcells, and how breast cancers becomedeath-resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Evan and T. Littlewood (1998). A matter of life and cell death. Science 281:1317–1322.

    Google Scholar 

  2. J. M. Adams and S. Cory (1998). The Bcl-2 protein family: Arbiters of cell survival. Science 281:1322–1326.

    Google Scholar 

  3. H. Steller (1995). Mechanisms and genes of cellular suicide. Science 267:1445–1449.

    Google Scholar 

  4. M. D. Jacobson, M. Weil and M. C. Raff (1997). Programmed cell death in animal development. Cell 88:347–354.

    Google Scholar 

  5. D. R. Green and J. C. Reed (1998). Mitochondria and apoptosis. Science 281:1309–1312.

    Google Scholar 

  6. N. A. Thornberry and Y. Lazebnik (1998). Caspases: Enemies within. Science 281:1312–1316.

    Google Scholar 

  7. A. Ashkenazi and V. M. Dixit (1998). Death receptors: Signaling and modulation. Science 281:1305–1308.

    Google Scholar 

  8. P. J. Schedin, L. B. Thackray, P. Malone, S. C. Fontaine, R. R. Friis, and R. Strange (1996). Programmed cell death and mammary neoplasia. Cancer Treat. Res. 83:3–22.

    Google Scholar 

  9. Z. Werb, C. J. Sympson, C. M. Alexander, N. Thomasset, L. R. Lund, A. MacAuley, J. Ashkenas, and M. J. Bissell (1996). Extracellular matrix remodeling and the regulation of epithelial-stromal interactions during differentiation and involution. Kidney Int. Suppl. 54:S68–74.

    Google Scholar 

  10. S. Lelievre, V. M. Weaver, and M. J. Bissell. (1996). Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: A model of gene regulation. Recent Prog. Horm. Res. 51:417–432.

    Google Scholar 

  11. V. M. Weaver, A. H. Fischer, O. W. Peterson, and M. J. Bissell (1996). The importance of the microenvironm ent in breast cancer progression: Recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74: 833–851.

    Google Scholar 

  12. A. W. Stoker, C. H. Streuli, M. Martins-Green, and M. J. Bissell (1990). Designer microenvironments for the analysis of cell and tissue function. Curr. Opin. Cell Biol. 2:864–874.

    Google Scholar 

  13. C. D. Roskelley and M. J. Bissell (1995). Dynamic reciprocity revisited: A continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem. Cell Biol. 73:391–397.

    Google Scholar 

  14. M. J. Bissell (1997). The central role of basement membrane in functional differentiation, apoptosis, and cancer. In J. L. Tilly, J. F. Strauss, III, and M. Tenniswood (eds.), Cell Death in Reproductive Physiology, Springer-Verlag, New York, pp. 125–140.

    Google Scholar 

  15. L. Ronnov-Jessen, O. W. Petersen, and M. J. Bissell (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. 76:69–125.

    Google Scholar 

  16. H. K. Kleinman, M. L. McGarvey, J. R. Hassell, V. L. Star, F. B. Cannon, G. W. Laurie, and G. R. Martin (1986). Basement membrane complexes with biological activity. Biochemistry 25:312–318.

    Google Scholar 

  17. C. H. Streuli, C. Schmidhauser, N. Bailey, P. Yurchenco, A. P. Skubitz, C. Roskelley, and M. J. Bissell (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129:591–603.

    Google Scholar 

  18. O. W. Petersen, L. Ronnov-Jessen, A. R. Howlett, and M. J. Bissell (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89:9064–9068.

    Google Scholar 

  19. A. Lochter and M. J. Bissell (1995). Involvement of extracellular matrix constituents in breast cancer. Semin. Cancer Biol. 6:165–173.

    Google Scholar 

  20. V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137:231–245.

    Google Scholar 

  21. F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu, and M. J. Bissell (1998). Reciprocal interactions between β1–integrin and EGF-R in three-dimensional basement membrane cultures: A new perspective in normal and malignant breast epithelial biology. Proc. Natl. Acad. Sci. U.S.A. 95:14821–14826.

    Google Scholar 

  22. J. T. Emerman and D. R. Pitelka (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328.

    Google Scholar 

  23. D. Gospodarowicz, J. Lepine, S. Massoglia, and I. Wood (1984). Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived Endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro. J. Cell Biol. 99:947–961.

    Google Scholar 

  24. Y. Xia, S. G. Gil, and W. G. Carter (1996). Anchorage mediated by integrin α6β4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80–kD protein. J. Cell Biol. 132:727–740.

    Google Scholar 

  25. D. E. Ingber, J. A. Madri, and J. D. Jamieson (1986). Basement membrane as a spatial organizer of polarized epithelia. Exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro. Am. J. Pathol. 122:129–139.

    Google Scholar 

  26. D.L. Livant, S. Linn, S. Markwart, and J. Shuster (1995). Invasion of selectively permeable sea urchin embryo basement membranes by metastatic tumor cells, but not by their normal counterparts. Cancer Res. 55:5085–5093.

    Google Scholar 

  27. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Google Scholar 

  28. E. A. Clarke and J. S. Brugge (1995). Integrins and signal transduction pathways: The road taken. Science 268:233–239.

    Google Scholar 

  29. S. J. Shattil, M. H. Ginsberg, and J. S. Brugge (1994). Adhesive signaling in platelets. Curr. Opin. Cell Biol. 6:695–704.

    Google Scholar 

  30. T. A. Haas and E. F. Plow (1994). Integrin-ligand interactions: A year in review. Curr. Opin. Cell Biol. 6:656–662.

    Google Scholar 

  31. Y. Takada and W. Puzon (1993). Identification of a regulatory region of integrin β1 subunit using activating and inhibiting antibodies. J. Biol. Chem. 268:17597–17601.

    Google Scholar 

  32. K. M. Yamada and S. Miyamoto (1995). Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol. 7:681–689.

    Google Scholar 

  33. C. Q. Lin and M. J. Bissell (1993). Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 7:737–743.

    Google Scholar 

  34. M. J. Close, A. R. Howlett, C. D. Roskelley, P. Y. Desprez, N. Bailey, B. Rowning, C. T. Teng, M. R. Stampfer, and P. Yaswen (1997). Lactoferrin expression in mammary epithelial cells is mediated by changes in cell shape and actin cytoskeleton. J. Cell Sci. 110:2861–2871.

    Google Scholar 

  35. C. D. Roskelley, P.-Y Desprez, and M. J. Bissell (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. U.S.A. 91: 12378–12382.

    Google Scholar 

  36. L.-H. Chen and M. J. Bissell (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1:45–54.

    Google Scholar 

  37. D. Alford and P. Taylor-Papadimitriou (1996). Adhesion molecules in normal and cancerous mammary gland. J. Mamm. Gland Biol. Neoplasia 1:207–218.

    Google Scholar 

  38. C. W. Daniel, P. Strickland, and Y. Friedmann (1995). Expression and functional role of E-and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev. Biol. 69: 511–519.

    Google Scholar 

  39. A. J. Zhu and F. M. Watt (1996). Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J. Cell Sci. 109:3013–3023.

    Google Scholar 

  40. G. R. Merlo, N. Cella, and N. E. Hynes (1997). Apoptosis is accompanied by changes in Bcl-2 and Bax expression, induced by loss of attachment, and inhibited by specific extracellular matrix proteins in mammary epithelial cells. Cell Growth Differ. 8:251–260.

    Google Scholar 

  41. C. H. Streuli, N. Bailey, and M. J. Bissell (1991). Control of mammary epithelial differentiation: Basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115:1383–1395.

    Google Scholar 

  42. I. Kmicikiewicz, E. Koziel, U. Pelczar, A. Pierscinski, and B. Bilinska (1998). Mouse Leydig cell culture on microcarriers. Acta Histochem. 100:297–307.

    Google Scholar 

  43. Y. Hirai, A. Lochter, S. Galosy, S. Koshida, S. Niwa, and M. J. Bissell (1998). Epimorphin functions as a key morphoregulator for mammary epithelial cells. J. Cell Biol. 140: 159–169.

    Google Scholar 

  44. S. V. Litvinov, M. P. Velders, H. A. Bakker, G. J. Fleuren and S. O. Warnaar (1994). Ep-CAM: A human epithelial antigen is a homophilic cell-cell adhesion molecule. J. Cell Biol. 125: 437–446.

    Google Scholar 

  45. F. Berdichevsky, D. Alford, B. D'Souza, and J. Taylor-Papadimitriou (1994). Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107:3557–3568.

    Google Scholar 

  46. A. R. Howlett, N. Bailey, C. Damsky, O. W. Petersen, and M. J. Bissell (1995). Cellular growth and survival are mediated by β1 integrins in normal human breast epithelium but not in breast carcinoma. J. Cell Sci. 108:1945–1957.

    Google Scholar 

  47. S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N. Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. H. Streuli (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109:631–642.

    Google Scholar 

  48. C. H. Streuli and A. P. Gilmore (1999). Adhesion-medal regarding in the regulation of mammary epithelial cell-survival J. Mam. Gland Biol. Neoplasia 4:183–191.

    Google Scholar 

  49. S. M. Frisch and E. Ruoslahti (1997). Integrins and anoikis. Curr. Opin. Cell Biol. 9:701–706.

    Google Scholar 

  50. M. A. Schwartz (1997). Integrins, oncogenes, and anchorage independence. J. Cell Biol. 139:575–578.

    Google Scholar 

  51. N. Boudreau, Z. Werb, and M. J. Bissell (1996). Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. U.S.A. 93:3509–3513.

    Google Scholar 

  52. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997). Geometric control of cell life and death. Science 276:1425–1428.

    Google Scholar 

  53. D. Alford, D. Baeckstrom, M. Geyp, P. Pitha, and P. Taylor-Papadimitriou (1998). Integrin-matrix interactions affect the form of the structures developing from human mammary epithelial cells in collagen or fibrin gels. J. Cell Sci. 111:521–532.

    Google Scholar 

  54. K. Schorr, M. Li, S. Krajewski, J. C. Reed, P. A. Furth (1999). Bcl-2 gene family and related proteins in mammary gland involution and breast cancer. J. Mam. Gland Biol. Neoplasia 4:153–164.

    Google Scholar 

  55. R. Jager, U. Herzer, J. Schenkel, and H. Weiher (1997). Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795.

    Google Scholar 

  56. O. W. Petersen, L. Ronnov-Jessen, V. M. Weaver, and M. J. Bissell (1998). Differentiation and cancer in the mammary gland: Shedding light on an old dichotomy. Adv. Cancer Res. 75:135–161.

    Google Scholar 

  57. S. A. Lelièvre, V. M. Weaver, J. A. Nickerson, C. A. Larabell, A. Bhaumik, O. W. Petersen, and M. J. Bissell (1998). Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc. Natl. Acad. Sci. U.S.A. 95:14711–14716.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, V.M., Bissell, M.J. Functional Culture Models to Study Mechanisms Governing Apoptosis in Normal and Malignant Mammary Epithelial Cells. J Mammary Gland Biol Neoplasia 4, 193–201 (1999). https://doi.org/10.1023/A:1018781325716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018781325716

Navigation