Skip to main content
Log in

Estimating Co2 Source/Sink Distributions Within A Rice Canopy Using Higher-Order Closure Model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Source/sink strengths and vertical fluxdistributions of carbon dioxide within and above arice canopy were modelled using measured meanconcentration profiles collected during aninternational rice experiment in Okayama, Japan (IREX96). The model utilizes an Eulerian higher-orderclosure approach that permits coupling of scalar andmomentum transport within vegetation to infer sourcesand sinks from mean scalar concentration profiles; theso-called `inverse problem'. To compute the requiredvelocity statistics, a Eulerian second-order closuremodel was considered. The model well reproducedmeasured first and second moment velocity statisticsinside the canopy. Using these modelled velocitystatistics, scalar fluxes within and above the canopywere computed and compared with CO2eddy-correlation measurements above the canopy. Goodagreement was obtained between model calculations offluxes at the top of the canopy and measurements. Close to the ground, the model predicted higherrespiratory fluxes when the paddy was drained comparedto when it was flooded. This is consistent with thefloodwater providing a barrier to diffusion ofCO2 from the soil to the atmosphere. TheEulerian sources and flux calculations were alsocompared to source and flux distributions estimatedindependently using a Lagrangian Localized Near Fieldtheory, the first study to make such a comparison.Some differences in source distributions werepredicted by these analyses. Despite this, thecalculated fluxes by the two approaches compared wellprovided a closure constant, accounting for theinfluence of `near-field' sources in the Eulerian fluxtransport term, was given a value of 1.5 instead ofthe value of 8 found in laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdella, K. and McFarlane, N.: 1997, ‘A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer’, J. Atmos. Sci. 54, 1850–1867.

    Google Scholar 

  • André, J. C., de Moor, G., Lacarrere, P., Therry, G., and du Vachat, R.: 1979, ‘The Clipping Approximation and Inhomogeneous Turbulence Simulations’, Turbulent Shear Flow I, 307–318.

    Google Scholar 

  • Andren, A.: 1990, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air Pollution Applications’, J. Appl. Meteorol. 29, 224–239.

    Google Scholar 

  • Canuto, V. M., Minotti, F., Ronchi, C., Ypma, R. M., and Zeman, O.: 1994, ‘Second-Order Closure PBL Model with New Third-Order Moments: Comparison with LES Data’, J. Atmos. Sci. 51, 1605–1618.

    Google Scholar 

  • Corrsin, S.: 1974, ‘Limitations of Gradient Transport Models in Random Walks and Turbulence’, Adv. Geophys. 18A, 25–60.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Theoretical Expression for the Countergradient Vertical Heat Flux’, J. Geophys. Res. 77, 5900–5904.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Closure of Second and Third Moment Rate Equations for Diffusion in Homogeneous Turbulence’, Phys. Fluids 21, 525–530.

    Google Scholar 

  • Denmead, O. T.: 1995, ‘Novel Meteorological Methods for Measuring Trace Gas Fluxes’, Phil. Trans. Roy. Soc. London A. 351, 383–396.

    Google Scholar 

  • Denmead, O. T. and Bradley, E. E.: 1985, ‘Flux-Gradient Relationships in a Forest Canopy’, in B. A. Hutchinson and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel, Norwell, MA, pp. 421–442.

  • Denmead, O. T. and Raupach, M. R.: 1993, ‘Methods for Measuring Atmospheric Gas Transport in Agricultural and Forest Systems’, in J. M. Duxbury, L. A. Harper, A. R. Mosier, and D. E. Rolston (eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, American Society of Agronomy, Madison.

    Google Scholar 

  • Donaldson, C. Du P.: 1973, ‘Construction of a Dynamic Model for the Production of Atmospheric Turbulence and the Dispersion of Atmospheric Pollutants’, Workshop on Micrometeorology, Amer. Meteor. Soc., 313–392.

  • Finnigan, J. J.: 1985, ‘Transport in Flexible Plant Canopies’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Company, Norwell, MA, pp. 443–480.

    Google Scholar 

  • Gibson, M. M. and Launder, B. E.: 1978, ‘Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer’, J. Fluid Mech. 86, 491–511.

    Google Scholar 

  • Hanjalic, K. and Launder, B. E.: 1972, ‘A Reynold Stress Model for Turbulence and its Application to Thin Shear Flows’, J. Fluid Mech. 52, 609–638.

    Google Scholar 

  • Hsieh, C. I. and Katul, G. G.: 1997, ‘The Dissipation Methods, Taylor's Hypothesis, and Stability Correction Functions in the Atmospheric Surface Layer’, J. Geophys. Res. 102, 16391–16405.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford Press, 289 pp.

  • Katul, G. G. and Albertson, J. D.: 1998, ‘An Investigation of Higher Order Closure Models for a Forest Canopy’, Boundary-Layer Meteorol. 89, 47–74.

    Google Scholar 

  • Katul, G. G. and Albertson, J. D.: 1999, ‘Modeling CO2 Sources, Sinks, and Fluxes within a Forest Canopy’, J. Geophys. Res. 104, 6081–6091.

    Google Scholar 

  • Katul, G. G. and Chang, W.: 1999, ‘Principal Length Scales in Second-Order Closure Models for Canopy Turbulence’, J. Appl. Meteorol. 38, 1631–1643.

    Google Scholar 

  • Katul, G. G., Oren, R., Ellsworth, D., Hsieh, C. I., Phillips, N., and Lewin, K.: 1997a: ‘A Lagrangian Dispersion Model for Predicting CO2 Sources, Sinks, and Fluxes in a Uniform Loblolly Pine (Pinus taeda L.) Stand’, J. Geophys. Res. 102, 9309–9321.

    Google Scholar 

  • Katul, G. G., Hsieh, C. I., Kuhn, G., Ellsworth, D., and Nie, D.: 1997b, ‘Turbulent Eddy Motion at the Forest-Atmosphere Interface’, J. Geophys. Res. 102, 13, 409–13, 421.

    Google Scholar 

  • Leuning, R.: 2000, ‘Estimation of Scalar Source/Sink Distributions in Plant Canopies Using Lagrangian Dispersion Analysis: Corrections for Atmospheric Stability and Comparison with a Multilayer Canopy Model’, Boundary-Layer Meteorol. 96, 293–314.

    Google Scholar 

  • Leuning, R., Denmead, O. T., Miyata, A., and Kim, J.: 2000, ‘Source/Sink Distributions of Heat, Water Vapor, Carbon Dioxide, and Methane in a Rice Canopy Estimated Using Lagrangian Dispersion Analysis’, Agric. For. Meteorol. 103, 233–249.

    Google Scholar 

  • Lewellen, W. S., Teske, M. E., and Sheng, Y. P.: 1980, ‘Micrometeorological Applications of a Second Order Closure Model of Turbulent Transport’, in L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows II, Springer-Verlag, pp. 366–378.

  • Lumely, J. L.: 1978, ‘Computational Modeling of Turbulent Flows’, Adv. Appl. Mech. 18, 123.

    Google Scholar 

  • Massman, W. and Weil, J. C.: 1999, ‘An Analytical One-Dimensional Second Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies of Arbitrary Structure’, Boundary-Layer Meteorol. 91, 81–107.

    Google Scholar 

  • Massman, W.: 1997, ‘An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure’, Boundary-Layer Meteorol. 83, 407–421.

    Google Scholar 

  • Mellor, G.: 1973, ‘Analytic Prediction of the Properties of Stratified Planetary Boundary Layer’, J. Atmos. Sci. 30, 1061–1069.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Meyers, T. and Baldocchi, D. D.: 1991, ‘The Budgets of Turbulent Kinetic Energy and Reynolds Stress within and above Deciduous Forest’, Agric. For. Meteorol. 53, 207–222.

    Google Scholar 

  • Meyers, T. and Paw U, K. T.: 1986, ‘Testing of a Higher-Order Closure Model for Modeling Airflow within and above Plant Canopies’, Boundary-Layer Meteorol. 37, 297–311.

    Google Scholar 

  • Meyers, T. and Paw U, K. T.: 1987, ‘Modelling the Plant Canopy Micrometeorology with Higher-Order Closure Principles’, Agric. For. Meteorol. 41, 143–163.

    Google Scholar 

  • Miyata, A., Leuning, R., Denmead, O. T., Kim, J., and Harazono, Y.: 2000, ‘Micrometeorological Measurements of Methane and CO2 Fluxes over an Intermittently Drained Paddy Field’, Agric. For. Meteorol., in press.

  • Moeng, C. H. and Wyngaard, J. C.: 1986, ‘An Analysis of Pressure-Scalar Covariances in the Convective Boundary Layer’, J. Atmos. Sci. 43, 2499–2513.

    Google Scholar 

  • Moeng, C. H. and Wyngaard, J. C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling’, J. Atmos. Sci. 46, 2311–2330.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. 1, MIT Press, Cambridge, MA, 769 pp.

    Google Scholar 

  • Panofsy, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, 397 pp.

  • Paw U, K. T. and Meyers, T. P.: 1989, ‘Investigations with a Higher-Order Canopy Turbulence Model into Mean Source-Sink Levels and Bulk Canopy Resistances’, Agric. For. Meteorol. 47, 259–271.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: 1992, Numerical Recipes in Fortran, 2nd edn, Cambridge University Press, 963 pp.

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment, Springer-Verlag, New York, pp. 95–127.

    Google Scholar 

  • Raupach, M. R.: 1989a, ‘Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies’, Agric. For. Meteorol. 47, 85–108.

    Google Scholar 

  • Raupach, M. R.: 1989b, ‘A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies’, Quart. J. Roy. Meteorol. Soc. 115, 609–632.

    Google Scholar 

  • Raupach,M. R. and Shaw, R. H.: 1982, ‘Averaging Procedures for Flow within Vegetation Canopies’, Boundary-Layer Meteorol. 22, 79–90.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Ann. Rev. Fluid. Mech. 13, 97–129.

    Google Scholar 

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’, Appl. Mech. Rev. 44, 1–25.

    Google Scholar 

  • Raupach, M. R., Denmead, O. T., and Dunin, F. X.: 1992, ‘Challanges in Linking Atmospheric CO2 Concentrations to Fluxes at Local and Regional Scales’, Aust. J. Bot. 40, 697–716.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, ‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy’, Boundary-Layer Meteorol. 78, 351–382.

    Google Scholar 

  • Reynolds, W. C. and Cebeci, T.: 1976, ‘Calculation of Turbulent Flows’, in P. Bradshaw (ed.), Topics in Applied Physics: Turbulence, Springer-Verlag, pp. 193–229.

  • Shaw, R. H.: 1977, ‘Secondary Wind Speed Maxima Inside Plant Canopies’, J. Appl. Meteorol. 16, 514–521.

    Google Scholar 

  • Shaw, R. H. and Pereira, A. R.: 1982, ‘Aerodynamic Roughness of a Plant Canopy: A Numerical Experiment’, Agric. Meteorol. 26, 51–65.

    Google Scholar 

  • Shaw, R. H., den Hartog, G., King, K. M., and Thurtell, G. W.: 1974, ‘Measurements of Mean Wind Flow and Three-Dimensional Turbulence Intensity within a Mature Corn Canopy’, Agric. For. Meteorol. 13, 419–425.

    Google Scholar 

  • Sreenivasan, K. R., Tavoularis, S., and Corrsin, S.: 1982, ‘A Test of Gradient Transport and its Generalization’, in L. J. S. Bradbury, F. Durst, B. E. Launder, F.W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flow III, Springer-Verlag, New York, pp. 96–112.

    Google Scholar 

  • Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. Roy. Meteorol. Soc. 97, 414–428.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Wilson, J. D.: 1988, ‘A Second Order Closure Model for Flow Through Vegetation’, Boundary-Layer Meteorol. 42, 371–392.

    Google Scholar 

  • Wilson, J. D.: 1989, ‘Turbulent Transport within the Plant Canopy’, in Estimation of Areal Evapotranspiration, IAHS Publ., No. 177, pp. 43–80.

  • Wilson, N. R. and Shaw, R. H.: 1977, ‘A Higher Order Closure Model for Canopy Flow’, J. Appl. Meteorol. 16, 1198–1205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katul, G.G., Leuning, R., Kim, J. et al. Estimating Co2 Source/Sink Distributions Within A Rice Canopy Using Higher-Order Closure Model. Boundary-Layer Meteorology 98, 103–125 (2001). https://doi.org/10.1023/A:1018730118183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018730118183

Navigation