Skip to main content
Log in

Floating stereospecific assignment revisited: Application to an 18 kDa protein and comparison with J-coupling data

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We report a floating chirality procedure to treat nonstereospecifically assigned methylene orisopropyl groups in the calculation of protein structures from NMR data using restrainedmolecular dynamics and simulated annealing. The protocol makes use of two strategies toinduce the proper conformation of the prochiral centres: explicit atom ‘swapping’ followingan evaluation of the NOE energy term, and atom ‘floating’ by reducing the angle andimproper force constants that enforce a defined chirality at the prochiral centre. The individualcontributions of both approaches have been investigated. In addition, the effects of accuracyand precision of the interproton distance restraints were studied. The model system employedis the 18 kDa single-stranded DNA binding protein encoded by Pseudomonas bacteriophagePf3. Floating chirality was applied to all methylene and isopropyl groups that give rise to non-degenerate NMR signals, and the results for 34 of these groups were compared to J-couplingdata. We conclude that floating stereospecific assignment is a reliable tool in protein structurecalculation. Its use is beneficial because it allows the distance restraints to be extracteddirectly from the measured peak volumes without the need for averaging or addingpseudoatom corrections. As a result, the calculated structures are of a quality almostcomparable to that obtained with stereospecific assignments. As floating chirality furthermoreis the only approach treating prochiral centres that ensures a consistent assignment of the twoproton frequencies in a single structure, it seems to be preferable over using pseudoatoms or(R-6) averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, S.J., Ikura, M., Torchia, D.A. and Bax, A. (1991) J. Magn. Reson., 95, 636–641.

    Google Scholar 

  • Beckman, R.A., Litwin, S. and Wand, A.J. (1993) J. Biomol. NMR, 3, 675–700.

    Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984) J. Chem. Phys., 81, 3684–3690.

    Google Scholar 

  • Brünger, A.T., Clore, G.M., Gronenborn, A.M. and Karplus, M. (1986) Proc. Natl. Acad. Sci. USA, 83, 3801–3805.

    Google Scholar 

  • Brünger, A.T., Clore, G.M., Gronenborn, A.M. and Karplus, M. (1987) Protein Eng., 1, 399–406.

    Google Scholar 

  • Brünger, A.T. (1992) X-PLOR. A System for X-ray Crystallography and NMR, Yale University Press, New Haven, CT, U.S.A.

    Google Scholar 

  • Cavanagh, J., Palmer, A.G., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 91, 429–436.

    Google Scholar 

  • Driscoll, P.C., Gronenborn, A.M. and Clore, G.M. (1989) FEBS Lett., 243, 223–233.

    Google Scholar 

  • Engh, R. and Huber, R. (1991) Acta Crystallogr., A47, 392–400.

    Google Scholar 

  • Fletcher, C.M., Jones, D.N.M., Diamond, R. and Neuhaus, D. (1996) J. Biomol. NMR, 8, 292–310.

    Google Scholar 

  • Folmer, R.H.A., Folkers, P.J.M., Kaan, A., Jonker, A.J., Aelen, J.M.A., Konings, R.N.H. and Hilbers, C.W. (1994) Eur. J. Biochem., 224, 663–676.

    Google Scholar 

  • Folmer, R.H.A., Hilbers, C.W., Konings, R.N.H. and Hallenga, K. (1995a) J. Biomol. NMR, 5, 427–432.

    Google Scholar 

  • Folmer, R.H.A., Nilges, M., Konings, R.N.H. and Hilbers, C.W. (1995b) EMBO J., 14, 4132–4142.

    Google Scholar 

  • Grzesiek, S., Vuister, G.W. and Bax, A. (1993) J. Biomol. NMR, 3, 487–493.

    Google Scholar 

  • Grzesiek, S., Kuboniwa, H., Hinck, A.P. and Bax, A. (1995) J. Am. Chem. Soc., 117, 5312–5315.

    Google Scholar 

  • Güntert, P., Braun, W., Billeter, M. and Wüthrich, K. (1989) J. Am. Chem. Soc., 111, 3997–4004.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Habazettl, J., Cieslar, C., Oschkinat, H. and Holak, T.A. (1990) FEBS Lett., 268, 141–145.

    Google Scholar 

  • Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78.

    Google Scholar 

  • Holak, T.A., Nilges, M. and Oschkinat, H. (1989) FEBS Lett., 242, 649–654.

    Google Scholar 

  • Hyberts, S.G., Märki, W. and Wagner, G. (1987) Eur. J. Biochem., 164, 625–635.

    Google Scholar 

  • Ikura, M., Kay, L.E., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 86, 204–209.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Koning, T.M.G., Boelens, R. and Kaptein, R. (1990) J. Magn. Reson., 90, 111–123.

    Google Scholar 

  • Konnert, J.H. and Hendrickson, W.A. (1980) Acta Crystallogr., A36, 344–350.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Nilges, M., Gronenborn, A.M., Brünger, A.T. and Clore, G.M. (1988) Protein Eng., 2, 27–38.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1990) Biopolymers, 29, 813–822.

    Google Scholar 

  • Nilges, M., Kuszewski, J. and Brünger, A.T. (1991) In Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy(Eds., Hoch, J.C., Poulsen, F.M. and Redfield, C.), Plenum, New York, NY, U.S.A., pp. 451–455.

    Google Scholar 

  • Nilges, M. (1993) Proteins, 17, 297–309.

    Google Scholar 

  • Palmer, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–553.

    Google Scholar 

  • Silver, M.S., Joseph, R.I. and Hoult, D.I. (1984) J. Magn. Reson., 59, 347–353.

    Google Scholar 

  • Tropp, J. (1980) J. Chem. Phys., 72, 6035–6043.

    Google Scholar 

  • Vuister, G.W., Wang, A.C. and Bax, A. (1993) J. Am. Chem. Soc., 115, 5334–5335.

    Google Scholar 

  • Weber, P.L., Morrison, R. and Hare, D. (1988) J. Mol. Biol., 204, 483–487.

    Google Scholar 

  • Williamson, M.P. and Madison, V.S. (1990) Biochemistry, 29, 2895–2905.

    Google Scholar 

  • Wüthrich, K., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

  • Zhao, D. and Jardetzky, O. (1994) J. Mol. Biol., 239, 601–607.

    Google Scholar 

  • Zuiderweg, E.R.P., Boelens, R. and Kaptein, R. (1985) Biopolymers, 24, 601–611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folmer, R.H., Hilbers, C.W., Konings, R.N. et al. Floating stereospecific assignment revisited: Application to an 18 kDa protein and comparison with J-coupling data. J Biomol NMR 9, 245–258 (1997). https://doi.org/10.1023/A:1018670623695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018670623695

Navigation