Skip to main content
Log in

Applications of Integral Equation Calculations to High-Temperature Solvation Phenomena

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The solvation of infinitely dilute solutes in supercritical solvents is illustrated by integral equation calculations, according to a recently proposed molecular-based formalism that characterizes the solvent environment around individual species and connects it to the resulting macroscopic solvation behavior. The formalism is applied to the analysis of the solubility enhancement of nonelectrolyte species, the solvent effect in kinetic rate constants, and the solvation of ionic species. Finally, some relevant theoretical implications are discussed regarding the modeling of high-temperature solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. J. Bruno and J. F. Ely, Supercritical Fluid Technology (CRC Press, Boca Raton, 1991).

    Google Scholar 

  2. E. Kiran and J. M. H. Levelt Sengers, Supercritical Fluids. Fundamentals for Applications (Kluwer Academic Publishers, Dordrecht, 1994).

    Google Scholar 

  3. Anonymous, in Food Engineering International (1981), pp. 45–46.

  4. P. Hubert and O. G. Vizthum, Angew. Chem. Int. Ed. Engl. 17:710–715 (1978).

    Google Scholar 

  5. M. Modell, in Standard Handbook of Hazardous Waste Treatment and Disposal, H. M. Freeman, ed. (McGraw-Hill, New York, 1989).

    Google Scholar 

  6. P. E. Savage, S. Golapan, T. I. Mizan, C. J. Martino, and E. E. Brock, AICHE J. 41:1723–1778 (1995).

    Google Scholar 

  7. A. A. Chialvo and P. T. Cummings, AICHE J. 40:1558–1573 (1994).

    Google Scholar 

  8. J. M. H. Levelt Sengers, J. Supercritical Fluids 4:215–222 (1991).

    Google Scholar 

  9. D. B. McGuigan and P. A. Monson, Fluid Phase Equilibria 57:227–247 (1990).

    Google Scholar 

  10. L. L. Lee, P. G. Debenedetti, and H. D. Cochran, in Supercritical Fluid Technology: Reviews in Modern Theory and Applications,T. J. Bruno and J. F. Ely, eds. (CRC Press, Boca Raton, 1991), pp. 193–226.

    Google Scholar 

  11. A. A. Chialvo and P. T. Cummings, in Advances in Chemical Physics, Vol. 109, S. A. Rice, ed. (Wiley & Sons, New York, 1999), pp. 115–205.

    Google Scholar 

  12. A. A. Chialvo and P. T. Cummings, Molec. Phys. 84:41–48 (1995).

    Google Scholar 

  13. A. A. Chialvo, P. T. Cummings, J. M. Simonson, and R. E. Mesmer, J. Chem. Phys. 110:1075–1086 (1999).

    Google Scholar 

  14. A. A. Chialvo, J. Chem. Phys. 92:673–679 (1990).

    Google Scholar 

  15. A. A. Chialvo, Fluid Phase Equilibria 83:23–32 (1993).

    Google Scholar 

  16. A. A. Chialvo, P. T. Cummings, J. M. Simonson, and R. E. Mesmer, J. Molecular Liquids, in press (2000).

  17. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 86:5110–5116 (1987).

    Google Scholar 

  18. J. P. O'Connell, in Fluctuation Theory of Mixtures, Vol. 2, E. Matteoli and G. A. Mansoori, eds. (Taylor and Francis, New York, 1990), pp. 45–67.

    Google Scholar 

  19. M. Modell and R. C. Reid, Thermodynamics and its Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).

    Google Scholar 

  20. M. E. Paulaitis, V. J. Krukonis, R. T. Kurnik, and R. C. Reid, Rev. Chem. Eng. 1:179–250 (1983).

    Google Scholar 

  21. M. L. Japas and J. M. H. Levelt Sengers, AICHE J. 35:705–713 (1989).

    Google Scholar 

  22. A. H. Harvey and J. M. H. Levelt Sengers, AICHE J. 36:539–546 (1990).

    Google Scholar 

  23. A. H. Harvey, R. Crovetto, and J. M. H. Levelt Sengers, AICHE J. 36:1901–1904 (1990).

    Google Scholar 

  24. W. Wilhelm, in Molecular Liquids: New Perspectives in Physics and Chemistry, J. J. C. Teixeira-Dias, ed. (Kluwer Academic Publishers, 1992), pp. 175–206.

  25. A. A. Chialvo, Y. V. Kalyuzhnyi, and P. T. Cummings, AICHE J. 42:571–584 (1996).

    Google Scholar 

  26. J. F. Brennecke, in Supercritical Engineering Science. Fundamentals Studies and Applications, Vol. 514, E. Kiran and J. F. Brennecke, eds. (American Chemical Society, Washington, DC, 1993), pp. 201–219.

    Google Scholar 

  27. C. E. Bunker and Y.-P. Sun, J. Am. Chem. Soc. 117:10865–10870 (1995).

    Google Scholar 

  28. J. E. Chateauneuf, C. B. Roberts, and J. F. Brennecke, in Supercritical Fluid Technology. Theoretical and Applied Approaches in Analytical Chemistry, Vol. 488, F. V. Bright and M. E. P. McNally, eds. (American Chemical Society, Washington, 1992), pp. 106–120.

    Google Scholar 

  29. J. T. Hynes, in Theory of Chemical Reaction Dynamics, Vol. IV, M. Baer, ed. (CRC Press, Boca Raton, 1985), pp. 171–234.

    Google Scholar 

  30. A. A. Chialvo, P. T. Cummings, and Y. V. Kalyuzhnyi, AICHE J. 44:667–680 (1998).

    Google Scholar 

  31. J. M. H. Levelt Sengers, in Supercritical Fluid Technology, T. J. Bruno and J. F. Ely, eds. (CRC Press, Boca Raton, 1991a), pp. 1–56.

    Google Scholar 

  32. A. A. Chialvo, P. G. Kusalik, P. T. Cummings, and J. M. Simonson, J. Chemical Physics, submitted for publication (2000).

  33. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 89:5845–5851 (1988).

    Google Scholar 

  34. P. H. Fries and G. N. Patey, J. Chem. Phys. 82:429–440 (1985).

    Google Scholar 

  35. A. A. Chialvo and P. G. Debenedetti, Industrial & Engineering Chemistry Research 31:1391–1397 (1992).

    Google Scholar 

  36. B. L. Knutson, D. L. Tomasko, C. A. Eckert, P. G. Debenedetti, and A. A. Chialvo, in Recent Advances in Supercritical Fluid Technology. Theoretical and Applied Approaches to Analytical Chemistry, Vol. 488, F. Bright and M. E. P. McNally, eds. (American Chemical Society, Washington, DC, 1992), pp. 61–72.

    Google Scholar 

  37. J. A. O'Brien, T. W. Randolph, C. Carlier, and G. Shankar, AICHE J. 39:1061–1071 (1993).

    Google Scholar 

  38. P. G. Debenedetti and R. S. Mohamed, J. Chem. Phys. 90:4528–4536 (1989).

    Google Scholar 

  39. D. Henderson, E. Waisman, J. L. Lebowitz, and L. Blum, Molec. Phys. 35:241–255 (1978).

    Google Scholar 

  40. L. S. Ornstein and F. Zernike, Proc. Akad. Sci. (Amsterdam) 17:793–806 (1914).

    Google Scholar 

  41. E. Arrieta, C. Jedrzejek, and K. M. Marsh, J. Chem. Phys. 95:6838–6848 (1991).

    Google Scholar 

  42. Y. V. Kalyuzhnyi and P. T. Cummings, Molec. Phys. 87:1459–1462 (1996).

    Google Scholar 

  43. J. S. H∅ye and G. Stell, J. Chem. Phys. 67:439 (1977).

    Google Scholar 

  44. A. A. Chialvo, Y. Kalyuzhnyi, and P. T. Cummings, in Innovations in Supercritical Fluids: Science and Technology, Vol. 608, K. W. H. a. N. R. and Foster, eds. (American Chemical Society, Washington, DC, 1995), pp. 34–46.

    Google Scholar 

  45. C. Ebner, W. F. Saam, and D. Stroud, Phys. Rev. A 14:2264–2272 (1976).

    Google Scholar 

  46. R. J. Baxter, J. Chem. Phys. 52:4559 (1970).

    Google Scholar 

  47. J. S. H∅ye, E. Waisman, and G. Stell, Molec. Phys. 32:209 (1976).

    Google Scholar 

  48. J. S. H∅ye and L. Blum, J. Stat. Phys. 16:399 (1977).

    Google Scholar 

  49. Y. V. Kalyuzhnyi and M. F. Holovko, Molec. Phys. 80:1165–1176 (1993).

    Google Scholar 

  50. K. P. Shukla, A. A. Chialvo, and J. M. Haile, Industrial H Engineering Chemistry Research 27:664–671 (1988).

    Google Scholar 

  51. A. A. Chialvo and P. G. Debenedetti, Molec. Simulation 7:265–283 (1991).

    Google Scholar 

  52. C. B. Roberts, J. Zhang, J. E. Chateauneuf, and J. F. Brennecke, J. Am. Chem. Soc. 117:6553–6560 (1995).

    Google Scholar 

  53. A. A. Chialvo, Molec. Phys. 73:127–140 (1991).

    Google Scholar 

  54. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 88:7715–7738 (1988).

    Google Scholar 

  55. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 89:7478–7484 (1988).

    Google Scholar 

  56. J. P. O'Connell, A. V. Sharygin, and R. H. Wood, Industrial H Engineering Chemistry Research 35:2808–2812 (1996).

    Google Scholar 

  57. J. Sedlbauer, E. M. Yezdimer, and R. H. Wood, J. Chem. Thermodyn. 30:3–12 (1998).

    Google Scholar 

  58. M. S. Gruszkiewicz and R. H. Wood, J. Phys. Chem. B 101:6549–6559 (1997).

    Google Scholar 

  59. M. Magini, G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, X-Ray Diffraction of Ions in Aqueous Solutions: Hydration and Complex Formation (CRC Press, Inc., Boca Raton, 1988).

    Google Scholar 

  60. B. E. Conway, Ionic Hydration in Chemistry and Biophysics (Elsevier, Amsterdam, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chialvo, A.A., Kusalik, P.G., Kalyuzhnyi, Y.V. et al. Applications of Integral Equation Calculations to High-Temperature Solvation Phenomena. Journal of Statistical Physics 100, 167–199 (2000). https://doi.org/10.1023/A:1018639728431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018639728431

Navigation