Skip to main content
Log in

Nonequilibrium Phase Transition in a Model of Diffusion, Aggregation, and Fragmentation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the nonequilibrium phase transition in a model of aggregation of masses allowing for diffusion, aggregation on contact, and fragmentation. The model undergoes a dynamical phase transition in all dimensions. The steady-state mass distribution decays exponentially for large mass in one phase. In the other phase, the mass distribution decays as a power law accompanied, in addition, by the formation of an infinite aggregate. The model is solved exactly within a mean-field approximation which keeps track of the distribution of masses. In one dimension, by mapping to an equivalent lattice gas model, exact steady states are obtained in two extreme limits of the parameter space. Critical exponents and the phase diagram are obtained numerically in one dimension. We also study the time-dependent fluctuations in an equivalent interface model in (1+1) dimension and compute the roughness exponent χ and the dynamical exponent z analytically in some limits and numerically otherwise. Two new fixed points of interface fluctuations in (1+1) dimension are identified. We also generalize our model to include arbitrary fragmentation kernels and solve the steady states exactly for some special choices of these kernels via mappings to other solvable models of statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. H. White, J. Colloid Interface Sci. 87:204 (1982).

    Google Scholar 

  2. R. M. Ziff, J. Stat. Phys. 23:241 (1980).

    Google Scholar 

  3. A. E. Scheidegger, Bull. I.A.S.H. 12:15 (1967).

    Google Scholar 

  4. A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti, and I. R. Iturbe, Phys. Rev. E 53:1510 (1996); M. Cieplak, A. Giacometti, A. Maritan, A. Rinaldo, I. R. Iturbe, and J. R. Banavar, J. Stat. Phys. 91:1 (1998).

    Google Scholar 

  5. S. K. Friedlander, Smoke, Dust and Haze (Wiley, Interscience, New York, 1977).

    Google Scholar 

  6. B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films (Academic Press, New York, 1978).

    Google Scholar 

  7. S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev. Lett. 81:3691 (1998).

    Google Scholar 

  8. H. Takayasu, Phys. Rev. Lett. 63:2563 (1989); H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev. A 37:3110 (1988).

    Google Scholar 

  9. R. D. Vigil, R. M. Ziff, and B. Lu, Phys. Rev. B 38:942 (1988).

    Google Scholar 

  10. P. L. Krapivsky and S. Redner, Phys. Rev. E 54:3553 (1996).

    Google Scholar 

  11. G. Ananthakrishna, Pramana 12:543 (1979).

    Google Scholar 

  12. X. Campi and H. Krivine, Nucl. Phys. A 620:46 (1997).

    Google Scholar 

  13. J. Krug and P. A. Ferrari, J. Phys. A 29:L446 (1996).

    Google Scholar 

  14. M. R. Evans, J. Phys. A 30:5669 (1997).

    Google Scholar 

  15. G. Tripathy and M. Barma, Phys. Rev. Lett. 78:3039 (1997); Phys. Rev. E 58:1911 (1998).

    Google Scholar 

  16. M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, and F. Mhirech, Phys. Lett. A 253:135 (1999).

    Google Scholar 

  17. F. Ritort, Phys. Rev. Lett. 75:1990 (1995).

    Google Scholar 

  18. O. J. O'Loan, M. R. Evans, and M. E. Cates, Phys. Rev. E 58:1404 (1998).

    Google Scholar 

  19. Rajesh R., in preparation.

  20. T. M. Ligget, Interacting Particle Systems (Springer-Verlag, New York, 1983).

    Google Scholar 

  21. J. Krug and H. Spohn, in Solids Far From Equilibrium, C. Godrèche, ed. (Cambridge University Press, Cambridge, 1991); T. J. Halpin-Healy and Y. C. Zhang, Phys. Rep. 254: 215 (1995).

    Google Scholar 

  22. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. Lond. A 381:17 (1982).

    Google Scholar 

  23. J. M. Hammersley, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. le Cam and J. Neyman, eds. (University of California Press, Berkeley, 1967), Vol. III, p. 89.

    Google Scholar 

  24. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  25. B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems, Vol. 17, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1995).

    Google Scholar 

  26. J. Krug, Adv. Phys. 46:139 (1997).

    Google Scholar 

  27. S. N. Majumdar and D. A. Huse, Phys. Rev. E 52:270 (1995).

    Google Scholar 

  28. A. J. Bray, Adv. Phys. 43:357 (1994).

    Google Scholar 

  29. C. Sire and S. N. Majumdar, Phys. Rev. E 52:244 (1995).

    Google Scholar 

  30. K. Klauck and A. Schadschneider, cond-mat/9812201.

  31. R. Rajesh and D. Dhar, Phys. Rev. Lett. 81:1646 (1998).

    Google Scholar 

  32. S. N. Coppersmith, C.-H. Liu, S. N. Majumdar, O. Narayan, and T. A. Witten, Phys. Rev. E 53:4673 (1996).

    Google Scholar 

  33. B. Derrida and M. R. Evans, in Nonequilibrium Statistical Mechanics in One Dimension, V. Privman, ed. (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  34. J. Krug and J. Garcia, cond-mat/9909034.

  35. P. A. Ferrari and L. R. G. Fontes, El. J. Prob. 3 (1998).

  36. G. SchÜtz, J. Stat. Phys. 88:427 (1997); V. Karimipour, cond-mat/9812403.

    Google Scholar 

  37. J. Cardy, J. Phys. A Math. Gen. 28:L19 (1995), and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S.N., Krishnamurthy, S. & Barma, M. Nonequilibrium Phase Transition in a Model of Diffusion, Aggregation, and Fragmentation. Journal of Statistical Physics 99, 1–29 (2000). https://doi.org/10.1023/A:1018632005018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018632005018

Navigation