Skip to main content
Log in

Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation has been carried out into the possibility of in situ formation of MoS2 within porous anodic films on aluminium, to improve subsequent tribological behaviour, by re-anodizing in thiomolybdate electrolyte. Acidification of thiomolybdate was employed to simulate the conditions for formation of the sulphide at the anodic film/electrolyte interface, followed by appropriate vacuum heat treatments to study possible temperature effects on the sulphide due to either friction or Joule heating during anodizing. The products of both acidification and heat treatment, characterized by X-ray powder diffraction and scanning electron microscopy, were compared with those formed by direct thermal decomposition of ammonium tetrathiomolybdate crystals. The precipitate formed by acidification was mainly amorphous molybdenum trisulphide (MoS3), which on heat treatment at 450 and 850°C yielded 3R-MoS2. 3R-MoS2 also formed by the thermal decomposition of thiomolybdate crystals. Thermogravimetric and differential thermal analyses showed that the decomposition of MoS3 to MoS2 occurred in the range 220–370°C and revealed the sequence of reaction steps. The findings suggest that mainly amorphous MoS3 is formed as a consequence of changes in the pH of the film/electrolyte interface during re-anodizing but the product is relatively easily transformed to crystalline MoS2 on moderate heating which may occur during wear processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Whittingham, Sci. 192 (1976) 1126.

    Google Scholar 

  2. D. S. Takur and B. Delmon, J. Catal. 91 (1985) 308.

    Google Scholar 

  3. J. A. Ogilvy, Wear 160 (1993) 171.

    Google Scholar 

  4. R. L. Fusaro, American Society of Lubrication Engineers Trans. 25 (1982) 141.

    Google Scholar 

  5. W. O. Winer, Wear 10 (1967) 422.

    Google Scholar 

  6. R. Murray and B. L. Evans, J. Appl. Cryst. 12 (1979) 312.

    Google Scholar 

  7. R. N. Viswanath and S. Ramasamy, J. Mater. Sci. Lett. 25 (1990) 5029.

    Google Scholar 

  8. S. H. El-Mahalawy and B. L. Evans, J. Appl. Cryst. 9 (1976) 403.

    Google Scholar 

  9. A. A. Al-Hilli and B. L. Evans, J. Cryst. Growth5 (1972) 93.

    Google Scholar 

  10. J. Mering and A. Levialdi, C.R. Acad. Sci. Paris 213 (1941) 798.

    Google Scholar 

  11. C. N. R. Rao and K. P. Pisharody, Prog. Solid State Chem. 10 (1975) 207.

    Google Scholar 

  12. J. C. Wildervanck and F. Jellinek, Z. Anorg. Allgem. Chem. 328 (1964) 309.

    Google Scholar 

  13. A. Vazquez, J. M. Dominguez, C. Pina, A. Jaidar and S. Fuentes, J. Mater. Sci. Lett. 9 (1990) 712.

    Google Scholar 

  14. B. C. Stupp, Thin Solid Films 84 (1981) 257.

    Google Scholar 

  15. S. Chandra and S. N. Sahu, J. Phys. D. 17 (1984) 2115.

    Google Scholar 

  16. P. Pramanik and S. Bhattacharya, J. Mater. Sci. Lett. 8 (1989) 781.

    Google Scholar 

  17. G. Guang, Y. Wu, J. Li and H. Liu, Acta Metall. Sinica B 6 (1993) 102.

    Google Scholar 

  18. K. Isawa, M. Maejima and K. Sarawatari, New Mater. New Process. 2 (1983) 420.

    Google Scholar 

  19. A. W. Brace and M. G. Faul, Trans. Inst. Met. Finish. 66 (1988) 133.

    Google Scholar 

  20. R. G. Dickinson and L. Pauling, J. Amer. Chem. Soc. 45 (1923) 1466.

    Google Scholar 

  21. Y. Takeuchi and W. Nowacki, Schweiz. Mineral. Petrogr. Mitt. 44 (1964) 105.

    Google Scholar 

  22. F. E. Wickman and D. K. Smith, Amer. Mineral. 55 (1970) 1843.

    Google Scholar 

  23. J. W. Frondel and F. E. Wickman, ibid. 55 (1970) 1857.

    Google Scholar 

  24. R. J. J. Newberry, ibid. 64 (1979) 758.

    Google Scholar 

  25. Idem, ibid. 64 (1979) 768.

    Google Scholar 

  26. E. P. KHLYBOV, G. M. KUZüMICHEVA and V. V. EVDOKIMOVA, Russ. J. Inorg. Chem. 31 (1986) 627.

    Google Scholar 

  27. R. CHEVREL, M. SERGENT and J. PRIGENT, Mater. Res. Bull. 9 (1974) 1487.

    Google Scholar 

  28. J. M. Tarascon and G. W. Hull, ibid. 21 (1986) 859.

    Google Scholar 

  29. F. Mawrow and M. Nokolow, Z. Anorg. Allgem. Chem. 95 (1916) 188.

    Google Scholar 

  30. ASTM Diffraction Data File, Card No. 17-744

  31. P. Ratnasamy, L. Rodrique and A. J. Leonard, J. Phys. Chem. 77 (1973) 2242.

    Google Scholar 

  32. E. Y. Rode and B. A. Lebedev, Russ. J. Inorg. Chem. 6 (1961) 608.

    Google Scholar 

  33. W. W. Wendlandt, “Thermal Methods of Analysis”, 2nd Edn (John Wiley & Sons, New York, 1974) pp. 928.

    Google Scholar 

  34. F. R. Applewhite, J. S. L. Leach and P. Neufeld, Corros. Sci. 9 (1969) 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WANG, H., SKELDON, P., THOMPSON, G. et al. Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate. Journal of Materials Science 32, 497–502 (1997). https://doi.org/10.1023/A:1018538424373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018538424373

Keywords

Navigation