Skip to main content
Log in

Mixed mode fracture energy of sprucewood

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The characterization of Mixed Mode (Mode I and Mode II) behaviour of wood was concentrated on concepts of linear fracture mechanics in the past. Using an adopted version of the splitting test it was possible to obtain complete load displacement curves under different Mixed Mode loading cases for crack propagation along the grain. Therefore fracture energy concepts (specific fracture energy) could be used to characterize the material behaviour. Additionally strength parameters were used in order to describe crack initation in two crack propagation systems. The values for specific fracture energies as well as the strength values were compared with pure Mode I fracture tests. Moreover, the size effect under Mixed Mode loading was investigated to guarantee size independent material characterizing values for the specific fracture energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Ashby, K. E. Easterling, R. Harrysson and S. K. Maiti, Proc. R. Soc. (London) A 398 (1985) 261.

    Google Scholar 

  2. G. Prokopski, J. Mater. Sci. 28 (1993) 5995.

    Google Scholar 

  3. S. E. Stanzl-tschegg, D. M. Tan and E. K. Tschegg, Wood Sci Technol. 29 (1995) 31.

    Google Scholar 

  4. L. Daudeville, Holz als Roh-u. Werkstoff 57 (1999) 425.

    Google Scholar 

  5. C. L. Chow and C. W. Woo, in Proc. 1st Internat. Conf.Wood Fracture (Vancouver, 1979) p. 39.

  6. J. G. Williams and M. W. Birch, in ASTM STP 601 Cracks and Fracture, p. 125.

  7. J. D. Barrett and R. O. Foschi, Eng. Fract. Mech. 9 (1977) 371.

    Google Scholar 

  8. S. Mall, J. F. Murphy and J. E. Shottafer, J. Eng. Mech. 109 (1983) 680.

    Google Scholar 

  9. G. Valentin and P. Caumes, Wood Sci Technol. 23 (1989) 43.

    Google Scholar 

  10. A. P. Schniewind, S. L. Quarles and S.-H. Lee, ibid. 30 (1996) 273.

    Google Scholar 

  11. S.-H. Lee, S. L. Quarles and A. P. Schniewind, ibid. 30 (1996) 283.

    Google Scholar 

  12. E. K. Tscheggand S. E. Stanzl tschegg, Austrian Patent Office, registered Nov. (1999).

  13. E. K. Tschegg, T. Pleschberger and S. E. Stanzl-tschegg, Int. Journ. Fract., submitted.

  14. E. K. Tschegg, Aust. Pat. 233/96, 390 328 (1986).

  15. A. Reiterer, S. E. Stanzl-tschegg and E. K. Tschegg, Wood Sci. Technol. 34 (2000) 317.

    Google Scholar 

  16. G. Sinn, A. Reiterer, S. E. Stanzl-Tschegg and E. K. Tschegg, Holz als Rohund Werkstoff, accepted.

  17. S. Holmberg, K. Persson and H. Petersson, Comp. Struct. 72 (1999) 459.

    Google Scholar 

  18. A. Hillerborg, Int. Journ. Fract. 51 (1991) 95.

    Google Scholar 

  19. S. Holmberg, Report TVSM-1010, Lund University, 1998.

  20. A. Hillerborg, Rilem Techn. Committees 18 (1985) 292.

    Google Scholar 

  21. H. Harmuth, K. Rieder, M. Krobath and E. K. Tschegg, Mater. Sci. Eng. A 214 (1996) 53.

    Google Scholar 

  22. V. E. Saouma and E. S. Sikiotis, Eng. Fract. Mech. 25 (1986) 115.

    Google Scholar 

  23. H. Schachner, A. Reiterer and S. E. Stanzltschegg, J. Mater. Sci. Lett. 13 (2000) 1783.

    Google Scholar 

  24. J. Bodig and B. A. Jayne, in “Mechanics of Wood and Wood Composites” (Krieger Publishing Company, Malabar, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschegg, E.K., Reiterer, A., Pleschberger, T. et al. Mixed mode fracture energy of sprucewood. Journal of Materials Science 36, 3531–3537 (2001). https://doi.org/10.1023/A:1017940903011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017940903011

Keywords

Navigation