Skip to main content
Log in

Mathematical properties of mutation-selection models

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This article provides an overview of the mathematical properties of various deterministic mutation-selection models. Many, even basic, results about models with more than two alleles per locus have only been obtained in the past two decades and are scattered throughout the literature. I review the fundamental results about existence and stability of equilibria for classical mutation-selection models with a finite number of alleles, for models like the stepwise-mutation model, and for the continuum-of-alleles model. For all these models, first- and second-order approximations for the equilibrium mean fitness and the mutation load are presented. Then I examine mutation-stabilizing selection balance. As an application of the results on the mutation load, second-order approximations for the equilibrium genetic variance can be derived. Various approximations for this equilibrium variance, which have been obtained in the literature, are concisely reviewed and their ranges of validity are compared. In particular, the dependence of the equilibrium variance on the parameters of the underlying genetic system, such as the form of the mutation distribution or the linkage map, is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akin, E., 1979. The Geometry of Population Genetics. Lect. Notes Biomath. 31. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Barton, N.H., 1986. The maintenance of polygenic variation through a balance between mutation and stabilizing selection. Genet. Res. Camb. 47: 209-216.

    CAS  Google Scholar 

  • Barton, N.H., 1989. Divergence of a polygenic system subject to stabilizing selection, mutation and drift. Genet. Res. 54: 59-77.

    PubMed  CAS  Google Scholar 

  • Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337-370.

    PubMed  CAS  Google Scholar 

  • Baum, L.E. & J.A. Eagon, 1967. An inequality with applications to statistical estimation for probability functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73: 360-363.

    Article  Google Scholar 

  • Bulmer, M.G., 1972. The genetic variability of polygenic characters under optimising selection, mutation and drift. Genet. Res. 19: 17-25.

    PubMed  CAS  Google Scholar 

  • Bulmer, M.G., 1974. Linkage disequilibrium and genetic variability. Genet. Res. 23: 281-289.

    PubMed  CAS  Google Scholar 

  • Bürger, R., 1983. Dynamics of the classical genetic model for the evolution of dominance. Math. Biosci. 67: 125-143.

    Article  Google Scholar 

  • Bürger, R., 1988. Mutation-selection balance and continuum-of-alleles models. Math. Biosci. 91: 67-83.

    Article  Google Scholar 

  • Bürger, R., 1989. Linkage and the maintenance of heritable variation by mutation-selection balance. Genetics 121: 175-184.

    PubMed  Google Scholar 

  • Bürger, R. & I.M. Bomze, 1996. Stationary distributions under mutation-selection balance: structure and properties. Adv. Appl. Prob. 28: 227-251.

    Article  Google Scholar 

  • Bürger, R. & J. Hofbauer, 1994. Mutation load and mutation-selection-balance in quantitative genetic traits. J. Math. Biol. 32: 193-218.

    Article  PubMed  Google Scholar 

  • Bürger, R. & R. Lande, 1994. On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance. Genetics 138: 901-912.

    PubMed  Google Scholar 

  • Bürger, R., G.P. Wagner & F. Stettinger, 1989. How much heritable variation can be maintained in finite populations by a mutationselection balance? Evolution 43: 1748-1766.

    Article  Google Scholar 

  • Butcher, D., 1995. Muller's ratchet, epistasis and mutation effects. Genetics 141: 431-437.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1990. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55: 199-221.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1991. Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization. Genetical Research 57: 177-194.

    Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1993. Mutation accumulation in finite populations. J. of Heredity 84: 321-325.

    Google Scholar 

  • Crow, J.F., 1970. Genetic loads and the cost of natural selection, pp. 128-177 in Mathematical Topics in Population Genetics, edited by K. Kojima. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Crow, J.F.& M. Kimura, 1964. The theory of genetic loads, pp. 495- 505 in Proc. XI Int. Congr. Genetics, vol. 2. Oxford: Pergamon Press.

    Google Scholar 

  • Crow, J.F.& M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper and Row.

    Google Scholar 

  • Eigen, M. & P. Schuster, 1977. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64: 541-565.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1974. The evolutionary advantage of recombination. Genetics 78: 737-756.

    PubMed  CAS  Google Scholar 

  • Fleming, W.H., 1979. Equilibrium distributions of continuous polygenic traits. SIAM J. Appl. Math. 36: 148-168.

    Article  Google Scholar 

  • Fraser, G.R., & O. Mayo, 1974. Genetical load in man. Humangenetik 23: 83-110.

    PubMed  CAS  Google Scholar 

  • Hadeler, K.P., 1981. Stable polymorphisms in a selection model with mutation. SIAM J. Appl. Math. 41: 1-7.

    Article  Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population - Muller's ratchet. Theor. Popul. Biol. 14: 251-267.

    Article  PubMed  CAS  Google Scholar 

  • Haldane, J.B.S., 1937. The effect of variation on fitness. Amer. Natur. 71: 337-349.

    Article  Google Scholar 

  • Haldane, J.B.S., 1957. The cost of natural selection. J. Genet. 55: 511-524.

    Google Scholar 

  • Hastings, A., 1989. Linkage disequilibrium and genetic variance under mutation-selection balance. Genetics 121: 857-860.

    PubMed  CAS  Google Scholar 

  • Hastings, A., 1990. Maintenance of polygenic variation through mutation-selection balance: bifurcation analysis of a biallelic model. J. Math. Biol. 28: 329-340.

    PubMed  CAS  Google Scholar 

  • Hill, W.G., 1982. Predictions of response to artificial selection from new mutations. Genet. Res. 40: 255-278.

    PubMed  Google Scholar 

  • Hofbauer, J., 1985. The selection mutation equation. J. Math. Biol. 23: 41-53.

    PubMed  CAS  Google Scholar 

  • Houle, D., 1989. The maintenance of polygenic variation in finite populations. Evolution 43: 1767-1780.

    Article  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1988. Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genet. Res. 52: 33-43.

    PubMed  CAS  Google Scholar 

  • Kimmel, M. & R. Chakraborty, 1996. Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor. Popul. Biol. 50: 318-367.

    Google Scholar 

  • Kimura, M., 1965. A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. U.S.A. 54: 731-736.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1981. Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons. Proc. Natl. Acad. Sci., USA 78: 5773-5777.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Maruyama, 1966. The mutational load with epistatic gene interaction in fitness. Genetics 54: 1337-1351.

    PubMed  Google Scholar 

  • King, J.L., 1966. The gene interaction component of the genetic load. Genetics 53: 403-413.

    PubMed  CAS  Google Scholar 

  • Kingman, J.F.C., 1977. On the properties of bilinear models for the balance between genetic mutation and selection. Math. Proc. Camb. Phil. Soc. 81: 443-453.

    Google Scholar 

  • Kingman, J.F.C., 1978. A simple model for the balance between selection and mutation. J. Appl. Prob. 15: 1-12.

    Article  Google Scholar 

  • Kingman, J.F.C., 1980. Mathematics of Genetic Diversity. Philadelphia: SIAM.

    Google Scholar 

  • Kondrashov, A.S., 1982. Selection against harmful mutations in large sexual and asexual populations. Genet. Res. 40: 325-332.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1994. Muller's ratchet under epistatic selection. Genetics 136: 1469-1473.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & J.F. Crow, 1988. King's formula for the mutation load with epistasis. Genetics 120: 853-856.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221-235

    PubMed  CAS  Google Scholar 

  • Lande, R., 1980. Genetic variation and phenotypic evolution during allopatric speciation. Amer. Natur. 116: 463-479.

    Article  Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460-1469.

    Article  Google Scholar 

  • Latter, B.D.H., 1960. Natural selection for an intermediate optimum. Australian J. of Biol. Sciences 13: 30-35.

    Google Scholar 

  • López, M.A. & C. López-Fanjul, 1993a,b. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. I. Response to artificial selection. Genet. Res. 61: 107-116. II. Distribution of mutant effects on the trait and fitness. Genet. Res. 61: 117-126.

    PubMed  Google Scholar 

  • Lynch, M., & W.G. Hill, 1986. Phenotypic evolution by neutral mutation. Evolution 40: 915-935.

    Article  Google Scholar 

  • Lynch, M. & W. Gabriel, 1990. Mutation load and the survival of small populations. Evolution 44: 1725-1737.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995. Mutation accumulation and the extinction of small populations. Amer. Natur. 146: 489-518.

    Article  Google Scholar 

  • Mackay, T.F.C., R. Lyman, M.S. Jackson, C. Terzian, & W.G. Hill, 1992. Polygenic mutation in Drosophila melanogaster: estimates from divergence among inbred strains. Evolution 46: 300-316.

    Article  Google Scholar 

  • Moran, P.A.P., 1976. Global stability of genetic systems governed by mutation and selection. Math. Proc. Camb. Phil. Soc. 80: 331-336.

    Google Scholar 

  • Moran, P.A.P., 1977. Global stability of genetic systems governed by mutation and selection. II. Math. Proc. Camb. Phil. Soc. 81: 435-441.

    Article  Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Amer. J. Hum. Genet. 2: 111-176.

    PubMed  CAS  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2-9.

    Google Scholar 

  • Nagylaki, T., 1984. Selection on a quantitative character, pp. 275-306 in Human Population Genetics: The Pittsburgh Symposium, edited by A. Chakravarti. New York: Van Nostrand.

    Google Scholar 

  • Nagylaki, T., 1989. The maintenance of genetic variability in two-locus models of stabilizing selection. Genetics 122: 235-248.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1992. Introduction to Theoretical Population Genetics. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Norman, M.F., 1974. A central limit theorem for Markov processes that move by small steps. Ann. Prob. 2: 1065-1074.

    Google Scholar 

  • Ohta, T. & M. Kimura, 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22: 201-204.

    Article  Google Scholar 

  • Peck, J.R., 1994. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597-606.

    PubMed  CAS  Google Scholar 

  • Schlötterer, C., C. Vogl, & D. Tautz, 1997. Polymorphism and locus-specific effects on the polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics 146: 309-320.

    PubMed  Google Scholar 

  • Seneta, E., 1973. Non-Negative Matrices. London: Allen and Unwin.

    Google Scholar 

  • Slatkin, M., 1987. Heritable variation and heterozygosity under a balance between mutations and stabilzing selection. Genet. Res. 50: 53-62.

    PubMed  CAS  Google Scholar 

  • Swetina, J. & P. Schuster, 1982. Self-replicationwith errors. A model for poylnucleotide replication. Biophys. Chem. 16: 329-345.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.J. & J.L. McBride, 1974. On Eigen's theory of self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21: 127-142.

    Article  Google Scholar 

  • Turelli, M., 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor. Pop. Biol. 25: 138-193.

    Article  CAS  Google Scholar 

  • Turelli, M. & N.H. Barton, 1990. Dynamics of polygenic characters under selection. Theor. Pop. Biol. 38: 1-57.

    Article  Google Scholar 

  • Wagner, G.P. & P. Krall, 1993. What is the difference between models of error thresholds and Muller's ratchet? J. Math. Biol. 32: 33-44.

    Article  Google Scholar 

  • Wright, S., 1935a. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. J. of Genetics 30: 243-256

    Google Scholar 

  • Wright, S., 1935b. Evolution in populations in approximate equilibrium. J. Genetics 30: 257-266.

    Article  Google Scholar 

  • Wright, S., 1949. Adaptation and Selection, pp. 36589 in Genetics, Paleontology, and Evolution edited by G.L. Jepson, G.G. Simpson, and E. Mayr). Princeton: Univ. Press.

    Google Scholar 

  • Wright, S., 1969. Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. Chicago: University Press.

    Google Scholar 

  • Zeng, Z.B. & C.C. Cockerham, 1993. Mutation models and quantitative genetic variation. Genetics 133: 729-736.

    PubMed  CAS  Google Scholar 

  • Zhivotovsky, L.A. & M.W. Feldman, 1995. Microsatellite variability and genetic distances. Proc. Natl. Acad. Sci. USA 92: 11549-11552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, R. Mathematical properties of mutation-selection models. Genetica 102, 279–298 (1998). https://doi.org/10.1023/A:1017043111100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017043111100

Navigation