Skip to main content
Log in

Reactivity of the Unsaturated Triosmium Cluster [Os3(CO)8{Ph2PCH2P(Ph)C6H4}(μ-H)] with Thiols

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reaction of the unsaturated cluster [(μ-H)Os3(CO)8{Ph2PCH2P(Ph)C6H4}] 2 with C2H5SH, CH3CH(CH3)SH and C6H5SH are reported. The reaction of 2 with C2H5SH yields the new complexes [Os3(CO)8(μ-SC2H5)(η1-SC2H5){Ph2PCH2P(Ph)C6H4}(μ-H)] 9 and [Os3(CO)8)(SC2H5)(Ph2PCH2P)(Ph)C6H4}] 8 in 24 and 57% yields respectively and the known compound [(Os3(CO)8)(μ-SC2H5)(μ-dppm)(μ-H)] 7 in 5% yield. Compound 9, which exists as two isomers in solution, converts into 8 almost quantitatively in solution at 25°C and more rapidly in refluxing hexane. Compound8 reacts with H2 at 110°C to give 7 in high yield (86%). Treatment of 2 with propane-2-thiol yields [Os3(CO)8{μ-SCH(CH3)CH3}{Ph2PCH2P(Ph)C6H4}] 10 and [(Os3(CO)8{μ-SCH(CH3)CH3}{η1-SCH(CH3)CH3}{Ph2PCH2P(Ph)C6H4}(μ-H)] 11 in 75 and 3% yields respectively while with C6H5SH, [(Os3(CO)8(μ-SC6H5)(μ-dppm)(μ-H)] 6 is obtained as the only product in 75% yield. In both 8 and 10, the thiolato ligand bridges the Os–Os edge which is also bridged by the metallated phenyl group. The new compounds have been characterized by elemental analyses and spectroscopic methods (IR, 1H and 31P NMR). The molecular structures of 7, 8, 9 and 10 are reported as determined by X-ray diffraction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry (University Science Book, Mill Valley, CA, 1987), p. 241.

    Google Scholar 

  2. E. L. Muetterties and M. J. Krause (1983). Angew. Chem. Int. Ed. Engl. 22, 135; G. Suss-Fink and F. Neumann, in F. R. Hartley (ed.), Chemistry of the Metal-Carbon Bond, Vol. 5 (Wiley, New York, 1989), p. 231.

    Google Scholar 

  3. J. A. Clucas, D. F. Foster, M. M. Harding, and A. K. Smith (1984). J. Chem. Soc. Chem. Commun. 949.

  4. J. A. Clucas, M. M. Harding, and A. K. Smith (1985). J. Chem. Soc. Chem. Commun. 1180.

  5. J. A. Clucas, M. M. Harding, and A. K. Smith (1987). J. Chem. Soc. Chem. Commun. 1829; M. P. Brown, P. A. Dolby, M. M. Harding, A. A. Mathews, A. K. Smith, D. Osella, M. Arbrun, R. Gobetto, P. R. Raithby, and P. Zanello (1993). J. Chem. Soc. Dalton Trans. 827.

  6. M. P. Brown, P. A. Doby, M. M. Harding, A. J. Mathews, and A. K. Smith (1993). J. Chem. Soc. Dalton Trans. 1671.

  7. R. A. Bartlett, C. D. Cardin, D. J. Cardin, G. A. Lawless, J. M. Power, and P. P. Power (1988). J. Chem. Soc. Chem. Commun. 312.

  8. M. M. Harding, B. Kariuki, A. J. Mathews, A. K. Smith, and P. Braunstein (1994). J. Chem. Soc. Dalton Trans. 23.

  9. K. A. Azam, M. B. Hursthouse, M. R. Islam, S. E. Kabir, K. M. A. Malik, R. Miah, C. Sudbrake, and H. Vahrenkamp (1998). J. Chem. Soc. Dalton Trans. 1097.

  10. B. C. Wiegand and C. M. Friend (1992). Chem. Rev. 92, 491.

    Google Scholar 

  11. R. T. Weberg, R. C. Haltiwanger, J. C. V. Laurie, and M. Rakowski-Dubois (1986). J. Am. Chem. Soc. 108, 6242.

    Google Scholar 

  12. S. Harris and R. R. Chianelli (1984). J. Catal. 86, 400.

    Google Scholar 

  13. C. L. Coyl and W. G. Zumbt, in H. Matsubara, Y. Kotasube, and K. Wada (eds.), Iron-Sulfur Protein Research (Japan Scientific Societies Press, Tokyo, 1987), pp. 185–197.

    Google Scholar 

  14. J. M. Berg and R. H. Holm, in T. Spiro (ed.), Metal Ions in Biology (Wiley, New York, 1982), pp. 1–66.

    Google Scholar 

  15. A. J. Deeming, in D. F. Shriver and M. I. Bruce (eds.), Comprehensive Organometallic Chemistry II, Vol. 7 (Pergamon, London, 1995), p. 684.

    Google Scholar 

  16. A. M. Brodie, H. D. Holden, J. Lewis, and M. J. Taylor (1982). J. Chem. Soc. Dalton Trans. 633; P. V. Broadhurst, B. F. G. Johnson, and J. Lewis (1982). J. Chem. Soc. Dalton Trans. 1881; R. D. Adams, D. A. Katahira, and L. W. Yang (1982). Organometallics 1, 235; R. D. Adams, N. M. Golembeski, and J. P. Selegue (1981). J. Am. Chem. Soc. 103, 546; R. D. Adams, Z. Dawoodi, D. F. Foust, and B. E. Segmuller (1983). Organometallics 2, 315; R. D. Adams, J. E. Babin, P. Mathur, K. Natarajan, and J. Wang (1989). Inorg. Chem. 28, 1440; R. D. Adams, J. E. Babin, and M. Tasi (1988). Inorg. Chem. 27, 2618; R. D. Adams, J. T. Tanner, G. Chem, and J. Yin (1990). Organometallics 9, 595; R. D. Adams, J. E. Babin, J. Wang, and W. Wu (1989). Inorg. Chem. 28, 703.

  17. S. E. Kabir, E. Rosenberg, M. Day, and K. I. Hardcastle (1994). Organometallics 13, 4437.

    Google Scholar 

  18. S. E. Kabir, H. Vahrenkamp, M. B. Hursthouse, and K. M. A. Malik (1997). J. Organomet. Chem. 536–537, 509.

    Google Scholar 

  19. K. A. Azam, S. E. Kabir, A. Miah, M. W. Day, K. I. Hardcastle, E. Rosenberg, and A. J. Deeming (1992). J. Organomet. Chem. 435, 157.

    Google Scholar 

  20. S. R. Hodge, B. F. G. Johnson, J. Lewis, and P. R. Raithby (1987). J. Chem. Soc. Dalton Trans. 931.

  21. V. F. Allen, R. Mason, and P. B. Hitchcock (1977). J. Organomet. Chem. 140, 297; B. F. G. Johnson, J. Lewis, D. Pippard, and P. R. Raithby (1980). Acta Crystallogr. B 36, 703; R. D. Adams and N. M. Golembeski (1979). J. Am. Chem. Soc. 101, 1306; H. D. Holden, B. F. G. Johnson, J. Lewis, P. P. Raithby, and G. Uden (1983), Acta Crystallogr. C. 39, 1197, 1200, 1203.

    Google Scholar 

  22. R. D. Adams, D. A. Katahira, and L. W. Yang (1982). Organometallics 1, 235.

    Google Scholar 

  23. K. A. Azam, M. B. Hursthouse, S. E. Kabir, K. M. A. Malik, and Md. M. Mottalib (2000). Acta Crystallogr. (in press).

  24. K. Burgess, H. D. Holden, B. F. G. Johnson, J. Lewis, M. B. Hursthouse, N. P. C. Walker, A. J. Deeming, P. J. Manning, and R. Peters (1985). J. Chem. Soc. Dalton Trans. 85; Z. Dawoodi, M. J. Mays, and P. R. Raithby (1979). J. Chem. Soc. Chem. Commun. 721.

  25. P. Fompeyrine, G. Lavigne, and J. J. Bonnet (1987). J. Chem. Soc. Dalton Trans. 91.

  26. J. A. Darr, S. R. Drake, M. B. Hursthouse, and K. M. A. Malik (1993). Inorg. Chem. 32, 5704.

    Google Scholar 

  27. N. P. C. Walker and D. Stuart (1983). Acta Crystallogr. A 39, 158; adapted for FAST geometry by A. I. Karaulov (University of Wales, 1991).

    Google Scholar 

  28. G. M. Sheldrick (1990). Acta Crystallogr. A 46, 467.

    Google Scholar 

  29. G. M. Sheldrick, SHELXL-96 Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1996).

    Google Scholar 

  30. H. D. Flack (1983). Acta Crystallogr. A 39, 876.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tareque Abedin, S.M., Azam, K.A., Hursthouse, M.B. et al. Reactivity of the Unsaturated Triosmium Cluster [Os3(CO)8{Ph2PCH2P(Ph)C6H4}(μ-H)] with Thiols. Journal of Cluster Science 12, 5–22 (2001). https://doi.org/10.1023/A:1016606609077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016606609077

Navigation