Skip to main content
Log in

Further development and validation of empirical scoring functions for structure-based binding affinity prediction

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz, I.D., Science, 257 (1992) 1078.

  2. Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  3. Verlinde C.L.M.J. and Hol W.G.J., Structure, 2 (1994) 577.

  4. Babine, R.E. and Bender, S.L., Chem. Rev., 97 (1997) 1359.

  5. Gane, P.J. and Dean, P.M., Curr. Opin. Struct. Biol., 10 (2000) 401.

    Google Scholar 

  6. Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discovery Today, 3 (1998) 160.

  7. Makino, S. and Kuntz, I.D., J. Comp. Chem., 18 (1997) 1812.

  8. Morris, G.M., Goodsell, D.S., Halliday, R., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.

    Google Scholar 

  9. Jones, G., Wilett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    Google Scholar 

  10. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  11. Böhm, H.J., Curr. Opin. Biotech., 7 (1996) 433.

    Google Scholar 

  12. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

  13. Böhm, H.J., J. Comput. Aid. Mol. Des., 6 (1992) 61.

    Google Scholar 

  14. Gillet, V., Johnson, P. and Mata, P., J. Comput. Aid. Mol. Des., 7 (1993) 127.

    Google Scholar 

  15. Clark, D.E., Frenkel, D. and Levy, S.A., J. Comput. Aid. Mol. Des., 5 (1995) 13.

    Google Scholar 

  16. Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.

    Google Scholar 

  17. Wang, R., Gao, Y., Lai, L., J. Mol. Model., 6(2000) 498-516.

    Google Scholar 

  18. Schneider, G., Lee, M.L., Stahl, M. and Schneider, P., J. Comput. Aid. Mol. Des., 14 (2000) 487.

    Google Scholar 

  19. Kollman, P.A., Curr. Opin. Struct. Biol., 4 (1994) 240.

  20. Ajay and Murcko, M.A., J. Med. Chem., 38 (1995) 4953.

  21. Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.

    Google Scholar 

  22. Goodford, P.J.A., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  23. Massova, I. and Kollman, P., Perspect. Drug Disc. Des., 18 (2000) 113.

  24. Kollman, P., Chem. Rev., 7 (1993) 2395.

    Google Scholar 

  25. Aqvist, J., Medina, C. and Samuelsson, J.E., Protein Eng., 7 (1994) 385.

  26. Carlson, H.A. and Jorgensen, W.L., J. Phys. Chem., 99 (1995) 10667.

    Google Scholar 

  27. Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.

    Google Scholar 

  28. Jain, A.N., J. Comput. Aid. Mol. Des., 10 (1996) 427.

    Google Scholar 

  29. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

    Google Scholar 

  30. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput. Aid. Mol. Des., 11 (1997) 425.

    Google Scholar 

  31. Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309.

    Google Scholar 

  32. Wang, R., Gao, Y. and Lai, L., J. Mol. Model., 4 (1998) 379.

  33. Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem. 42 (1999) 5100.

    Google Scholar 

  34. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235, http://www.rcsb.org/pdb/.

  35. SYBYL v6.2, Tripos Inc. St. Louis, MO, U.S.A. http://www.tripos.com/

  36. Wang, R., Gao, Y. and Lai, L., Perspect. Drug Disc. Des., 19 (2000) 47.

  37. Wang, R. and Wang, S., J. Chem. Inf. Comput. Sci., 41 (2001) 1422.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Lai, L. & Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16, 11–26 (2002). https://doi.org/10.1023/A:1016357811882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016357811882

Navigation