Skip to main content
Log in

Functional studies of yeast actin mutants corresponding to human cardiomyopathy mutations

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The molecular mechanisms by which different mutations in actin lead to distinct cardiomyopathies are unknown. Here, actin mutants corresponding to α-cardiac actin mutations causing hypertrophic cardiomyopathy [(HCM) P164A and A331P] and dilated cardiomyopathy [(DCM) R312H and E361G] were expressed in yeast and purified for in vitro functional studies. While P164A appeared unaltered compared to wild-type (WT) actin, A331P function was impaired. A331P showed reduced stability in circular dichroism melting experiments; its monomer unfolding transition was 10°C lower compared to WT actin. Additionally, in vitro filament formation was hampered, and yeast cell cultures were temperature sensitive, implying perturbations in actin–actin interactions. Filament instability of the A331P mutant actin could lead to actomyosin dysfunction observed in HCM. Yeast strains harboring the R312H mutation did not grow well in culture, suggesting that cell viability is compromised. The E361G substitution is located at an α-actinin binding region where the actin filament is anchored. The mutant actin, though unaltered in the in vitro motility and standard actomyosin functions, had a threefold reduction in α-actinin binding. This could result in impairment of force-transduction in muscle fibers, and a DCM phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanchard A, Ohanian V and Critchley D (1989) The structure and function of α-actinin. J Muscle Res Cell Motil 10: 280–289.

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Carrier L, Richard P, Hainque B and Schwartz K (1998) Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 83: 580–593.

    PubMed  CAS  Google Scholar 

  • Cook RK, Blake WT and Rubenstein PA (1992) Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo. J Biol Chem 267: 9430–9436.

    PubMed  CAS  Google Scholar 

  • Doyle TC, Hansen JE and Reisler E (2001) Tryptophan fluorescence of yeast actin resolved via conserved mutations. Biophys J 80: 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Fatkin D, MacRae C, Sasaki T, Wol. MR, Porcu M, Frenneaux M, Atherton J, Vidaillet Jr, HJ, Spudich S, De Girolami U et al. (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341: 1715–1724.

    Article  PubMed  CAS  Google Scholar 

  • Gerson JH, Bobkova E, Homsher E and Reisler E (1999) Role of residues 311/312 in actin-tropomyosin interaction. J Biol Chem 274: 17,545–17,550.

    Article  CAS  Google Scholar 

  • Godfrey JE and Harrington WF (1970) Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment. Biochemistry 9: 886–893.

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W and Kabsch W (1990) Atomic model of the actin filament. Nature 347: 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Homsher E, Wang F and Sellers JR (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol 262: C714–C723.

    PubMed  CAS  Google Scholar 

  • Hozumi T, Miki M and Higashi-Fujime S (1996) Maleimidobenzoyl actin: its biochemical properties and in vitro motility. J Biochem 119: 151–156.

    PubMed  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K and Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163–168.

    PubMed  CAS  Google Scholar 

  • Johara M, Toyoshima YY, Ishijima A, Kojima H, Yanagida T and Sutoh K (1993) Charge-reversion mutagenesis of Dictyostelium actin to map the surface recognized by myosin during ATP-driven sliding motion. Proc Nat Acad Sci (USA) 90: 2127–2131.

    Article  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF and Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED et al. (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343: 1688–1696.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R, Aspenström P and Byström AS (1991) A chicken β-actin gene can complement a disruption of the S. cerevisiae ACT1 gene. Mol Cell Bio 11: 213–217.

    CAS  Google Scholar 

  • Kim E, Miller CJ and Reisler E (1996) Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal α-actin. Biochemistry 35: 16,566–16,572.

    CAS  Google Scholar 

  • Kodama T, Fukui K and Kometani K (1986) The initial phosphate burstin ATP hydrolysis by myosin and S1 as studied by a modified malachite green method for determination of Pi. J Biochem 99: 1465–1472.

    PubMed  CAS  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQ and Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzym 196: 399–416.

    CAS  Google Scholar 

  • Kuhlman PA, Hemmings L and Critchley DR (1992) The identification and characterisation of an actin-binding site in α-actinin by mutagenesis. Febs Lett 304: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lebart MC, Méjean C, Boyer M, Roustan C and Benyamin Y (1990) Localization of a new α-actinin binding site in the COOH-terminal part of actin sequence. Biochem Biophys Res Comm 173: 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Levine BA, Moir AJ, Patchell VB and Perry SV (1992) Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. Febs Lett 298: 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Li D, Tapscoft T, Gonzalez O, Burch PA, Quiñones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL and Roberts R (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100: 461–464.

    PubMed  CAS  Google Scholar 

  • Lorenz M, Poole KJ, Popp D, Rosenbaum G and Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin–tropomyosin gels. J Mol Biol 246: 108–119.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Stewart M, Kawamoto M, Kamiya N, Saeki K, Yasunaga T and Wakabayashi T (2000) Structural basis for the higher Ca2+-activation of the regulated actin-activated myosin ATPase observed with Dictyostelium/Tetrahymena actin chimeras. J Mol Biol 296: 579–595.

    Article  PubMed  CAS  Google Scholar 

  • Miller CJ and Reisler E (1995) Role of charged amino acid pairs in subdomain-1 of actin in interactions with myosin. Biochemistry 34: 2694–2700.

    Article  PubMed  CAS  Google Scholar 

  • Miller CJ, Doyle TC, Bobkova E, Botstein D and Reisler E (1996) Mutational analysis of the role of hydrophobic residues in the 338–348 helix on actin in actomyosin interactions. Biochemistry 35: 3670–3676.

    Article  PubMed  CAS  Google Scholar 

  • Mimura N and Asano A (1987) Further characterization of a conserved actin-binding 27-kDa fragment of actinogelin and α-actinins and mapping of their binding sites on the actin molecule by chemical cross-linking. J Biol Chem 262: 4717–4723.

    PubMed  CAS  Google Scholar 

  • Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U and Borglum AD (1999) α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103: R39–R43.

    PubMed  CAS  Google Scholar 

  • Mossakowska M and Strzelecka-Golaszewska H (1985) Identification of amino acid substitutions differentiating actin isoforms in their interaction with myosin. Eur J Biochem 153: 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Muntoni F, Cau M, Ganau A, Congiu R, Arvedi G, Mateddu A, Marrosu MG, Cianchetti C, Realdi G, Cao A et al. (1993) Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 329: 921–925.

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Michels VV, Thibodeau SN, Tai YS and Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280: 750–752.

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ and Fananapazir L (2000) Inherited and de novo mutations in the cardiac actin gene cause familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 32: 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Kishimoto NY, Whitby FG and Michels VV (2001) Mutations that alter the surface charge of α-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33: 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC and Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65.

    PubMed  CAS  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC and Lindberg U (1993) The structure of crystalline profilin-β-actin. Nature 365: 810–816.

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzym 194: 3–21.

    CAS  Google Scholar 

  • Sheterline P, Clayton J and Sparrow J (1995) Actin. Protein Profile 2: 1–103.

    PubMed  CAS  Google Scholar 

  • Sikorski RS and Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in S. cerevisiae. Genetics 122: 19–27.

    PubMed  CAS  Google Scholar 

  • Spudich JA and Watt S (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246: 4866–4871.

    PubMed  CAS  Google Scholar 

  • Sutoh K, Ando M and Toyoshima YY (1991) Site-directed mutations of Dictyostelium actin: disruption of a negative charge cluster at the N terminus. Proc Natl Acad Sci (USA) 88: 7711–7714.

    Article  CAS  Google Scholar 

  • Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE and Towbin JA (2000) Mutations in the human δ-sarcoglycan gene in familial hypertrophic cardiomyopathy and sporadic dilated cardiomyopathy. J Clin Invest 106: 655–662.

    Article  PubMed  CAS  Google Scholar 

  • Volkmann N, Hanein D, Ouyang G, Trybus KM, DeRosier DJ and Lowey S (2000) Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol 7: 1147–1155.

    Article  PubMed  CAS  Google Scholar 

  • Watkins H, Seidman JG and Seidman CE (1995) Familial hypertrophic cardiomyopathy: a genetic model of cardiac hypertrophy. Hum Mol Gen 4: 1721–1727.

    PubMed  CAS  Google Scholar 

  • Weeds AG and Pope B (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol 111: 129–157.

    PubMed  CAS  Google Scholar 

  • Wertman KF, Drubin DG and Botstein D (1992) Systematic mutational analysis of the yeast ACT1 gene. Genetics 132: 337–350.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W.W., Doyle, T.C., Cheung, P. et al. Functional studies of yeast actin mutants corresponding to human cardiomyopathy mutations. J Muscle Res Cell Motil 22, 665–674 (2001). https://doi.org/10.1023/A:1016354308436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016354308436

Keywords

Navigation