Skip to main content
Log in

Effects of Alloying Pd and Au on the Hydrogenation of Ethylene: An ab initio-Based Dynamic Monte Carlo Study

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

An ab initio-based dynamic Monte Carlo simulation was developed and used to examine the kinetics of ethylene hydrogenation over Pd and PdAu alloys. The intrinsic activation barriers, overall reaction energies and chemisorption energies were calculated from first-principles density functional theoretical calculations. Lateral interactions were modeled by fitting ab initio data to semi-empirical bond order conservation and force field models. The results indicate that the intrinsic activation barriers for ethylene hydrogenation were considerably reduced from 15 to 7-8 kcal/mol due to the intermolecular interactions that take place on the surface at higher coverages. At higher temperatures or lower partial pressures of hydrogen, ethylene decomposition paths to the formation of ethylidyne become important. Alloying the surface with Au influences the intrinsic kinetics for hydrogenation by reducing the activation barrier for hydrogenation but increasing the barriers for H2 dissociation and ethylidyne formation. This is primarily due to geometric effects that result from alloying. Electronic effects, while present, are significantly smaller. Despite its influence on specific elementary steps, Au appears to have little effect on the calculated turnover frequencies for ethane formation. There are relatively minor increases in the activation barrier from 7.0 to 7.2 to 8.0 as we move from Pd(111) to Pd 87.5% Au 12.5% to Pd 66.7% Au 33.3% respectively. The qualitative effects of Au as well as the quantitative apparent activation barriers reported here are consistent with known experimental results. Au reduces the binding energy of ethylene, which increases the surface hydrogenation activity. However, Au also reduces the number of sites that can activate hydrogen. This reduces the hydrogen surface coverage and subsequently decreases the rate of ethylene hydrogenation. These effects (the weaker metal--adsorbate bonds and the decreased hydrogen surface coverage) balance each other out whereby the addition of Au shows little effect on the simulated turnover frequency on a per Pd atom basis. The primary influence of Au therefore is to decrease the ethylene decomposition paths that lead to ethylidyne and CHx products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.C. Bond, J.J. Philipson, P.B. Wells, and J.Ì. Winterbottom, Trans. Farad. Soc. 62 (1966) 443.

    Google Scholar 

  2. V. Ponec and G.C. Bond, Catalysis by Metals and Alloys (Elsevier, New York, 1995).

    Google Scholar 

  3. J.W. Hightower, B. Furlong, A. Sarkany, and L. Guczi, Stud. Surf. Sci. Catal. 75 (1993) 2305.

    Google Scholar 

  4. L. Guczi, Z. Schay, G. Stefler, L.F. Liotta, G. Deganello, and A.M. Venezia, J. Catal. 182 (1999) 456.

    Google Scholar 

  5. R.M. Ormerod, R.M. Lambert, D.W. Bennett, and W.T. Tysoe, Surf. Sci. 330 (1995) 1.

    Google Scholar 

  6. C.J. Baddeley, C.J. Barnes, A. Wander, R.M. Ormerod, D.A. King, and R.Ì. Lambert, Surf. Sci. 314 (1994) 1.

    Google Scholar 

  7. A.F. Lee, C.J. Baddeley, M.S. Tikhov, and R.M. Lambert, Surf. Sci. 373 (1997) 195.

    Google Scholar 

  8. R.M. Ormerod, C.J. Baddeley, and R.M. Lambert, Surf. Sci. 259 (1991) L709.

    Google Scholar 

  9. W.D. Provine, P.L. Mills, and J.J. Lerou, Stud. Surf. Sci. Catal. 101 (1996) 191.

    Google Scholar 

  10. E.A. Crathorne, D. MacGowan, S.R. Morris, and A.P. Rawlinson, J. Catal. 149 (1994) 254.

    Google Scholar 

  11. J. Hagen, Industrial Catalysis (Wiley-VCH, Weinheim, 1999).

    Google Scholar 

  12. B.C. Gates, J.R. Katzer, and G.C.A. Schuit, Chemistry of Catalytic Processes (McGraw Hill, New York, 1979).

    Google Scholar 

  13. F. Besenbacher, I. Chorkendor., B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K. Nørskov, and I. Stensgaard, Science 279 (1998) 1913.

    Google Scholar 

  14. J.H. Sinfelt, Adv. Chem. Eng. 5 (1964) 37.

    Google Scholar 

  15. J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983).

    Google Scholar 

  16. V. Ponec and W.M.H. Sachtler, J. Catal. 24 (1972) 250.

    Google Scholar 

  17. V. Ponec and W.M.H. Sachtler, Proc. 5th Int. Congress on Catalysis, Amsterdam, 1973, Vol. 1, p. 645.

    Google Scholar 

  18. M.G. Samant, G. Meitzner, and M. Boudart, J. Phys. Chem. 92 (1988) 3542.

    Google Scholar 

  19. Y.L. Lam and M. Boudart, J. Catal. 50 (1977) 530.

    Google Scholar 

  20. R.J. Davis and M. Boudart, J. Phys. Chem. 98 (1994) 5471.

    Google Scholar 

  21. R.J. Davis and M. Boudart, Catal. Sci. Technol. (1991) 129.

  22. C.H. Bartholomew and M. Boudart, J. Catal. 29 (1973) 278.

    Google Scholar 

  23. B. Coq and F. Figueras, J. Mol. Catal. A: Chem. 173 (2001) 117.

    Google Scholar 

  24. J. Horiuti and M. Polanyi, Trans. Faraday Soc. 30 (1934) 1164.

    Google Scholar 

  25. M. Neurock and R.A. van Santen, J. Phys. Chem. B 104 (2000) 11127.

    Google Scholar 

  26. M. Neurock, V. Pallassana, and R.A. van Santen, J. Am. Chem. Soc. 122 (1999) 1150.

    Google Scholar 

  27. V. Pallassana, M. Neurock, L. Hansen, B. Hammer, and J.K. Nørskov, Phys. Rev. B 60 (1999) 6146.

    Google Scholar 

  28. V. Pallassana and M. Neurock, J. Catal. 191 (2000) 301.

    Google Scholar 

  29. V. Pallassana, M. Neurock, L.B. Hansen, B. Hammer, and J.K. Nørskov, Phys. Rev. B 60 (1999).

  30. E. Hansen and M. Neurock, Surf. Sci. 441 (1999) 410.

    Google Scholar 

  31. E.W. Hansen and M. Neurock, Chem. Eng. Sci. 54 (1999) 3411.

    Google Scholar 

  32. E.W. Hansen and M. Neurock, Surf. Sci. 464 (2000) 91.

    Google Scholar 

  33. E.W. Hansen and M. Neurock, J. Catal. 196 (2000) 241.

    Google Scholar 

  34. E.W. Hansen and M. Neurock, J. Phys. Chem. B (2001) in press.

  35. M. Neurock and E.W. Hansen, Comput. Chem. Eng. 22 (1998) S1045.

    Google Scholar 

  36. M. Neurock, E.W. Hansen, D. Mei, and V. Pallassana, Stud. Surf. Sci. Catal. 133 (2001) 19.

    Google Scholar 

  37. T.P. Beebe and J.T. Yates, J. Am. Chem. Soc. 108 (1986) 663.

    Google Scholar 

  38. L.L. Kesmodel and J.A. Gates, Surf. Sci. 111 (1981) L747.

    Google Scholar 

  39. L.L. Kesmodel and J.A. Gates, J. Elec. Spec. Rel. Phen. 29 (1983) 307.

    Google Scholar 

  40. F. Zaera, J. Am. Chem. Soc. 111 (1989) 4240.

    Google Scholar 

  41. F. Zaera and N. Bernstein, J. Am. Chem. Soc. 116 (1994) 4881.

    Google Scholar 

  42. F. Zaera, Chem. Rev. 95 (1995) 2651.

    Google Scholar 

  43. F. Zaera and C.R. French, J. Am. Chem. Soc. 121 (1999) 2236.

    Google Scholar 

  44. F. Zaera, Langmuir 12 (1996) 88.

    Google Scholar 

  45. B.E. Bent, Chem. Rev. 96 (1996) 1361.

    Google Scholar 

  46. R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (Wiley, 1996).

  47. T.P. Beebe and J.T. Yates, J. Phys. Chem. 91 (1987) 254.

    Google Scholar 

  48. P. Cremer, C. Stanners, J.W. Niemantsverdriet, Y.R. Shen, and G. Somorjai, Surf. Sci. 328 (1995) 111.

    Google Scholar 

  49. P.S. Cremer and G.Á. Somorjai, J. Chem. Soc. Faraday Trans. 91 (1995) 3671.

    Google Scholar 

  50. P.S. Cremer, X. Su, Y.R. Shen, and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  51. P.S. Cremer, X. Su, Y.R. Shen, and G.A. Somorjai, Catal. Lett. 40 (1996) 143.

    Google Scholar 

  52. P.S. Cremer, X. Su, Y.R. Shen, and G.A. Somorjai, J. Phys. Chem. B 101 (1997) 6474.

    Google Scholar 

  53. F. Zaera, T.V.W. Janssens, and H. Ofner, Surf. Sci. 368 (1996) 371.

    Google Scholar 

  54. E.M. Stuve, R.J. Madix, and C.R. Brundle, Surf. Sci. 152/153 (1985) 532.

    Google Scholar 

  55. D. Chrysostomou, and F. Zaera, J. Phys. Chem. B 105 (2001) 1003.

    Google Scholar 

  56. T.V.W. Janssens and F. Zaera, J. Phys. Chem. 100 (1996) 14118.

    Google Scholar 

  57. T.V.W. Janssens, D. Stone, J.C. Hemminger, and F. Zaera, J. Catal. 177 (1998) 284.

    Google Scholar 

  58. I. Kovács and F. Solymosi, J. Phys. Chem. 97 (1993) 11056.

    Google Scholar 

  59. B. Hammer and J.K. Nørskov, Phys. Rev. Lett. 79 (1997).

  60. B. Hammer, O.H. Nielsen, and J.K Nørskov, Catal. Lett. 46 (1997) 31.

    Google Scholar 

  61. T.A. Halgren, J. Comp. Chem. 17 (1996) 490, 520.

    Google Scholar 

  62. E. Shustorovich, Surf. Sci. Rep. 6 (1986) 1.

    Google Scholar 

  63. E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31 (1998) 1.

    Google Scholar 

  64. M. Neurock and E. Hansen, Comput. Chem. Eng. 22 (1998) S1045.

    Google Scholar 

  65. R. Cortright, S. Goddard, J. Rekoske, and J. Dumesic, J. Catal. 127 (1991) 342.

    Google Scholar 

  66. V. Pallassana, M. Neurock, V.S. Lusvardi, J.J. Lerou, D.D. Kragten, and R.Á. van Santen, J. Phys. Chem. B (2001) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neurock, M., Mei, D. Effects of Alloying Pd and Au on the Hydrogenation of Ethylene: An ab initio-Based Dynamic Monte Carlo Study. Topics in Catalysis 20, 5–23 (2002). https://doi.org/10.1023/A:1016339029623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016339029623

Navigation