Skip to main content
Log in

Cellular longevity: role of apoptosis and replicative senescence

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Cellular longevity refers to the lifespan of an individual cell. Normal cells have a finite lifespan and typically die by undergoing apoptosis, or enter into a state of irreversible growth arrest, termed replicative senescence, at the end of that lifespan. The lifespan of a cell is a balance between pro-survival/anti-apoptotic and pro-apoptotic death-promoting factors. The role of heat shock proteins, Bcl-2 family members, antioxidant molecules, and telomere length and telomerase activity in the regulation of apoptosis and replicative senescence, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JM and Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322-1326

    Article  PubMed  CAS  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89: 10114-10118

    Article  PubMed  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW and Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A and Dixit VM (1998) Death receptors: signaling and modulation. Science 281: 1305-1308

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM and Green DR (2000) Heatshock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469-475

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (1992) Telomerases. Annu Rev Biochem 61: 113-129

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH and Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33-53

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349-352

    Article  PubMed  CAS  Google Scholar 

  • Bonelli MA, Alfieri RR, Petronini PG, Brigotti M, Campanini C and Borghetti AF (1999) Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro. Exp Cell Res 252: 20-32

    Article  PubMed  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E and Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2: 645-652

    Article  PubMed  CAS  Google Scholar 

  • Bryan TM, Engleezou A, Gupta, J, Bacchetti S and Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240-4248

    PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA and Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumours and tumour-derived cell lines. Nature Med 3: 1271-1274

    Article  PubMed  CAS  Google Scholar 

  • Cleary ML and Sklar J. (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 21: 7439-7443

    Article  Google Scholar 

  • Concannon CG, Orrenius S and Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expression 9: 195-201

    PubMed  CAS  Google Scholar 

  • Cotto JJ and Morimoto RI (1999) Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp 64: 105-118

    PubMed  CAS  Google Scholar 

  • Counter CM, Hahn WC, Wei W, Dickenson Caddle S, Beijersbergen RL, Lansdorp, PM, Sedivy JM and Weinberg RA (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalisation. Proc Natl Acad Sci USA 95: 14723-14728

    Article  PubMed  CAS  Google Scholar 

  • Counter CM, Hirte HW, Bacchetti S and Harley CB (1994) Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 91: 2900-2904

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG (1983) Superoxide dismutase, longevity and specific metabolic rate. A reply. Gerontology 29: 113-120

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG (1985) Antioxidants and longevity of mammalian species. Basic Life Sci 35: 15-73

    PubMed  CAS  Google Scholar 

  • Darmon AJ, Ley TJ, Nicholson DW and Bleackley RC (1996) Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. J Biol Chem 271: 21709-21712

    Article  PubMed  CAS  Google Scholar 

  • Deigner HP, Haberkorn U and Kinscherf R (2000) Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opin Investig Drugs 9: 747-764

    Article  PubMed  CAS  Google Scholar 

  • Dunham MA, Neuamnn AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nature Genet 26: 338-339

    Google Scholar 

  • Effros RB, Zhu X and Walford RL (1994) Stress response of senescent T lymphocytes: reduced hsp70 is independent of the proliferative block. J Gerontol 49: B65-B70

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97-112

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Begley JG, Killen MW, Mattson MP (1999) Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 274: 7264-7271

    Article  PubMed  CAS  Google Scholar 

  • Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M and Chan PH (2000) The cytosolic antioxidant copper/zincsuperoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20: 2817-2824

    PubMed  CAS  Google Scholar 

  • Goyns MH and Lavery WL (2000) Telomerase and mammalian ageing: a critical appraisal. Mech Ageing Dev 114: 69-77

    Article  PubMed  CAS  Google Scholar 

  • Greider CW and Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43: 405-413

    Article  PubMed  CAS  Google Scholar 

  • Gutsmann-Conrad A, Heydari AR, You S and Richardson A (1998) The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human Exp Cell Res 241: 404-413

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW and Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400: 464-468

    Article  PubMed  CAS  Google Scholar 

  • Hajjar RJ, del Monte F, Matsui T and Rosenzweig A (2000) Prospects for gene therapy for heart failure. Circ Res 86: 616-621

    PubMed  CAS  Google Scholar 

  • Harley CB and Sherwood SW (1997) Telomerase, checkpoints and cancer. Cancer Surv 29: 263-284

    PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB and Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460

    Article  PubMed  CAS  Google Scholar 

  • Harvey NL, Trapani JA, Fernandes-Alnemri T, Litwack G, Alnemri ES and Kumar S (1996) Processing of the Nedd2 precursor by ICE-like proteases and granzyme B. Genes Cells 1: 673-685

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614-636

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1998) How and why we age. Exp Gerontol 33: 639-653 Hayflick L (2000) The illusion of cell immortality. Br J Cancer 83: 841-846

    Article  Google Scholar 

  • Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621

    Article  Google Scholar 

  • Hengartner MO and Horvitz HR (1994) Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 4: 581-586

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD and Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334-336

    Article  PubMed  CAS  Google Scholar 

  • Holt SE, Glinsky VV, Ivanova AB and Glinsky GV (1999) Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol Carcinog 25p: 241-248

    Article  PubMed  CAS  Google Scholar 

  • Hornsby PJ (2000) Cell transplantation and aging. Generations 24: 54

    Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T and Egeblad M (1998) Hsp72 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124-6134

    Article  PubMed  Google Scholar 

  • Jovanovic SV, Clements D and MacLeod K (1998) Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25: 1044-10448

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Kaminski N, Rechavi G, Jakob-Hirsch J, Amariglio N and Givol D (2001) DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene 20: 3449-3455

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH and Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-257

    PubMed  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW(1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015

    PubMed  CAS  Google Scholar 

  • Kiningham KK, Oberley TD, Lin S, Mattingly CA and St Clair DK (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 13: 1601-1610

    PubMed  CAS  Google Scholar 

  • Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA and Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalise human epithelial cells. Nature 396: 84-88

    Article  PubMed  CAS  Google Scholar 

  • Kruk PA, Rampino NJ and Bohr VA (1995) DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 92: 258-262

    Article  PubMed  CAS  Google Scholar 

  • Le S, Moore JK, Haber JE and Grieder CW (1999) RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143-152

    PubMed  CAS  Google Scholar 

  • Lindquist S and Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631-677

    Article  PubMed  CAS  Google Scholar 

  • Lundblad V and Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1-senescence Cell 73: 347-360

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234-282

    PubMed  CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K and Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 271: 16510-16514

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Counter cm, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA and Weinberg RA (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90: 785-795

    Article  PubMed  CAS  Google Scholar 

  • Meyne J, Ratliff RL and Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 86: 7049-7053

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Cheng J and Collins K (1999a) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3' end. Mol Cell Biol 19: 567-576

    PubMed  CAS  Google Scholar 

  • Mitchell JR, Wood E and Collins K (1999b) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402: 551-555

    Article  PubMed  CAS  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59: 521-529

    Article  PubMed  CAS  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83: 1413-1417

    PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C and Massie B (1997) Role of the human heat shock protein Hsp72 in protection against stress-induced apoptosis. Mol Cel Biol 17: 5317-5327

    CAS  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL and Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622-6626

    Article  PubMed  CAS  Google Scholar 

  • Muggleton-Harris AL and Hayflick L (1976) Cellular aging studied by the reconstruction of replicating cells from nuclei and cytoplasms isolated from normal human diploid cells. Exp Cell Res 103: 321-330

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1962) The remaking of chromosomes. In: Studies of Genetics: The Selected Papers of H.J. Muller, pp 384-408. Indiana University Press, Bloomington

    Google Scholar 

  • Muller HJ and Herskowitz IH (1954) Concerning the healing of chromosome ends produced by breakage in Drosophila melanogaster. Am Naturalist 88: 117-208

    Article  Google Scholar 

  • Multani AS, Ozen M, Narayan S, Kumar V, Chandra J, McConkey DJ, Newman RA and Pathak S (2000) Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2: 339-345

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T and Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887-894

    Article  PubMed  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM and Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90-98

    Article  PubMed  CAS  Google Scholar 

  • O'Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver ARJ, Davies DC, Alsop AE, Neville AM and Jat PS (2001) Conditional immortalisation of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci USA 98: 646-651

    Article  PubMed  Google Scholar 

  • Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31: 443-448

    Article  PubMed  CAS  Google Scholar 

  • Orr WC and Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128-1130

    PubMed  CAS  Google Scholar 

  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D and Kharbanda S (2000a) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19: 1975-1981

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D and Kharbanda S (2000b) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19: 4310-4322

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA and Lindquist S (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Smith OM and Bertram MJ (2000) Replicative senescence. Generations 24: 43

    Google Scholar 

  • Petersen S, Saretzki G and von Zglinicki T (1998) Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 239: 152-160

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y and Jacobson MD (1994) Programmed cell death and the control of cell survival. Philos Trans R Soc Lond B Biol Sci 345: 265-268

    PubMed  CAS  Google Scholar 

  • Rathbun WB and Holleschau AM (1992) The effects of age on glutathione synthesis enzymes in lenses of Old World simians and prosimians. Curr Eye Res 11: 601-607

    PubMed  CAS  Google Scholar 

  • Reddel RR, Bryan TM and Murnane, JP (1997) Immortalised cells with no detedtable telomerase activity. Biochemistry (Moscow) 62: 1254-1262

    CAS  Google Scholar 

  • Ren JG, Xia HL, Tian YM, Just T, Cai GP and Dai YR (2001a) Expression of telomerase inhibits hydroxyl radical-induced apoptosis in normal telomerase negative human lung fibroblasts. FEBS Lett 488: 133-138

    Article  PubMed  CAS  Google Scholar 

  • Ren JG, Xia HL, Just T and Dai YR (2001b) Hydroxyl radicalinduced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 488: 123-132

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD and Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476-483

    Article  PubMed  CAS  Google Scholar 

  • Samali A and Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223: 163-170

    Article  PubMed  CAS  Google Scholar 

  • Samali A and Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3: 228-236

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Robertson JD, Peterson E, Manero F, Van Zeijl L, Paul C, Cotgreave IA, Arrigi AP and Orrenius S (2001) Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress and Chaperones 6: 49-58

    Article  PubMed  CAS  Google Scholar 

  • Savory J, Rao JK, Huang Y, Letada PR and Herman MM (1999) Age-related hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 5: 805-817

    Google Scholar 

  • Seluanov A, Gorbunova V, Falcovitz A, Sigal A, Milyavsky M, Zurer I, Shohat G, Goldfinger N, Rotter V (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol Cell Biol 21: 1552-1564

    Article  PubMed  CAS  Google Scholar 

  • Shay JW and Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33: 787-791

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Pereira-Smith OM and Wright WE (1991a) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196: 33-39

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Wright WE and Werbin H (1991b) Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072: 1-7

    PubMed  CAS  Google Scholar 

  • Shelton DN, Chang E, Whittier PS, Choi D and Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9: 939-945

    Article  PubMed  CAS  Google Scholar 

  • Shi Y (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8: 394-401

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga MK and Ames BN (1993) Oxidants and mitogenesis as causes of mutation and cancer: the influence of diet. Basic Life Sci 61: 419-436

    PubMed  CAS  Google Scholar 

  • Shimizu S, Ide T, Yanagida T and Tsujimoto Y (2000a) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275: 12321-12325

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Shinohara Y and Tsujimoto Y (2000b) Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene 19: 4309-4318

    Article  PubMed  CAS  Google Scholar 

  • Slagboom PE, Droog S and Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55: 876-882

    PubMed  CAS  Google Scholar 

  • Spaulding C, Guo W and Effros RB (1999) Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 34: 633-644

    Article  PubMed  CAS  Google Scholar 

  • Stroh C and Schulze-Osthoff K (1998) Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ 5: 997-1000

    Article  PubMed  CAS  Google Scholar 

  • Sun J and Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216-228

    PubMed  CAS  Google Scholar 

  • Thornberry NA and Lazebnik Y (1998) Caspases: enemies within. Science 28: 1312-1316

    Article  Google Scholar 

  • Thornborrow EC and Manfredi JJ. (2001) The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter J Biol Chem 276: 15598-15608

    Article  PubMed  CAS  Google Scholar 

  • Tolmasoff JM, Ono T and Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77: 2777-2781

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y and Croce CM (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 14: 5214-5218

    Article  Google Scholar 

  • Vaziri H and Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31: 295-301

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H and Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8: 279-282

    Article  PubMed  CAS  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W and Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220: 186-193

    Article  PubMed  CAS  Google Scholar 

  • von Zglinicki T, Pilger R and Sitte N (2000) Accumulation of singlestrand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28: 64-74

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Hampel B, Bernhard D, Hala m, Zwerschke W and Jansen-Durr P (2001) Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol 36: 1327-1347

    Article  PubMed  CAS  Google Scholar 

  • Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55: 2284-2292

    PubMed  CAS  Google Scholar 

  • Warner HR, Hodes RJ and Pocinki K (1997) What does cell death have to do with aging? J Am Geriatr Soc 45: 1140-1146

    PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239: 197-201

    Article  PubMed  CAS  Google Scholar 

  • Whitaker NJ, Bryan TM, Bonnefin P, Chang AC, Musgrove EA, Braithwaite AW and Reddel RR (1995) Involvelment of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. Oncogene 11: 971-976

    PubMed  CAS  Google Scholar 

  • Wright WE and Hayflick L (1975) Nuclear control of cellular aging demonstrated by hybridization of anucleate and whole cultured normal human fibroblasts. Exp Cell Res 96: 113-121

    Article  PubMed  CAS  Google Scholar 

  • Wright WE and Shay JW (1992) The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 27: 383-389

    Article  PubMed  CAS  Google Scholar 

  • Wright WE and Shay JW (1995) Time, telomeres and tumours: is cellular senesence more than an anticancer mechanism? Trends in Cell Biology, Forum 5: 293-297

    Article  CAS  Google Scholar 

  • Wright WE and Shay JW (2001) Cellular senescence as a tumorprotection mechanism: the essential role of counting. Curr Opin Genet Dev 11: 98-103

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1997) Apoptosis: an overview. Br Med Bull 53: 451-465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Samali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bree, R.T., Stenson-Cox, C., Grealy, M. et al. Cellular longevity: role of apoptosis and replicative senescence. Biogerontology 3, 195–206 (2002). https://doi.org/10.1023/A:1016299812327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016299812327

Navigation