Skip to main content
Log in

Effects of the Resolution and Kinematics of Olfactory Appendages on the Interception of Chemical Signals in a Turbulent Odor Plume

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A variety of animals use olfactory appendages bearing arrays of chemosensory neurons to detect chemical signatures in the water or air around them. This study investigates how particular aspects of the design and behavior of such olfactory appendages on benthic aquatic animals affect the patterns of intercepted chemical signals in a turbulent odor plume. We use virtual olfactory `sensors' and `antennules' (arrays of sensors on olfactory appendages) to interrogate the concentration field from an experimental dataset of a scalar plume developing in a turbulent boundary layer. The aspects of the sensors that we vary are: (1) The spatial and temporal scales over which chemical signals arriving at the receptors of a sensor are averaged (e.g., by subsequent neural processing), and (2) the shape and orientation of a sensor with respect to ambient water flow. Our results indicate that changes in the spatial and temporal resolution of a sensor can dramatically alter its interception of the intermittency and variability of the scalar field in a plume. By comparing stationary antennules with those sweeping through the flow (as during antennule flicking by the spiny lobster, Panulirus argus), we show that flicking alters the frequency content of the scalar signal, and increases the likelihood that the antennule encounters peak events. Flicking also enables a long, slender (i.e., one-dimensional) antennule to intercept two-dimensional scalar patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warhaft, Z.: 2000, Passive scalars in turbulent flows, Annu. Rev. Fluid Mech. 32, 203–240.

    Google Scholar 

  2. Fackrell, J. and Robins, A.: 1982, Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer, J. Fluid Mech. 117, 1–26.

    Google Scholar 

  3. Bara, B., Wilson, D. and Zelt, B.: 1992, Concentration fluctutation profiles from a water channel simulation of a ground-level release, Atmos. Environ. 26A, 1053–1062.

    Google Scholar 

  4. Crimaldi, J. and Koseff, J.: 2001, High-resolution measurements of the spatial and temporal structure of a turbulent plume, Exp. Fluids 31, 90–102.

    Google Scholar 

  5. Webster, D.R. and Weissburg, M.J.: 2001, Chemosensory guidance cues in a turbulent chemical odor plume, Limnol. Oceanog. 46(5), 1034–1047.

    Google Scholar 

  6. Atema, J.: 1985, Chemoreception in the sea: Adaptations of chemoreceptors and behavior to aquatic stimulus conditions, Soc. Exp. Biol. Symp. 39, 387–423.

    Google Scholar 

  7. Atema, J.: 1996, Eddy chemotaxis and odour landscapes: Exploration of nature with animal sensors, Biol. Bull. 191, 129–138.

    Google Scholar 

  8. Ache, B.: 1988, Integration of chemosensory information in aquatic invertebrates. In: J. Atema, R. Fay, A. Popper, and W. Tavolga (eds.), Sensory Biology of Aquatic Animals, pp. 387–401, Springer-Verlag, New York.

    Google Scholar 

  9. Weissburg, M.: 2000, The fluid dynamical context of chemosensory behavior, Biol. Bull. 198, 188–202.

    Google Scholar 

  10. Grunert, U. and Ache, B: 1988, Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster Panulirus argus, Cell Tissue Res. 251, 95–103.

    Google Scholar 

  11. Laverack, M.: 1988, The diversity of chemoreceptors. In: J. Atema, R. Fay, A. Popper, and W. Tavolga (eds.): Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 287–317.

    Google Scholar 

  12. Atema, J.: 1977, Functional separation of smell and taste in fish and crustacea. In: J. Le-Magnen and L. MacLeod (eds.), Olfaction and Taste IV. Information Retrieval, pp. 165–174, Information Retrieval, London.

    Google Scholar 

  13. Atema, J.: 1995, Chemical signals in the marine environment: Dispersal, detection and temporal analysis. In: T. Eisner and J. Meinwals (eds.), Chemical Ecology: The Chemistry of Biotic Interaction, pp. 147–159, National Academy Press, Washington D.C.

    Google Scholar 

  14. Gleeson, R.: 1982, Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus, Biol. Bull. 3163, 162–171.

    Google Scholar 

  15. Hallberg, E., Johansson, K. and Elofsson, R.: 1992, The aesthetasc concept: Structural variations of putative olfactory receptor cell complexes in crustaceans, Microsc. Res. Techn. 22, 336–350.

    Google Scholar 

  16. Atema, J. and Voigt, R.: 1995, Behavior and sensory biology. In: I. Factor (ed.), Biology of the Lobster Homarus americanus, pp. 313–348, Academic Press, New York.

    Google Scholar 

  17. Koehl, M.: 2001, Fluid dynamics of animal appendages that capture molecules: Arthropod olfactory antennae. In: Conference Proceedings of the IMA Workshop on Computational Modeling in Biological Fluid Dynamics.

  18. Schmidt, B. and Ache, B.: 1979, Olfaction: Responses of a decapod crustacean are enhanced by flicking, Science 205, 204–206.

    Google Scholar 

  19. Moore, P., Gerhardt, G. and Atema, J.: 1989, High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes, Chem. Senses 14, 829–840.

    Google Scholar 

  20. Moore, P., Atema, J. and Gerhardt, G.: 1991, Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus, Chem. Senses 16, 663–674.

    Google Scholar 

  21. Gleeson, R., Carr, W.E.S. and Trapido-Rosenthal, H.G.: 1993, Morphological characteristics facilitating stimulus access and removal in the olfactory organ of the spiny lobster, Panulirus argus: insight from the design, Chem. Senses 18, 67–75.

    Google Scholar 

  22. Mead, K., Koehl, M.A.R. and O'Donnell, M.J.: 1999, Stomatopod sniffing: The scaling of chemosensory sensillae and flicking behavior with body size, J. Exp. Mar. Biol. Ecol. 241, 235–261.

    Google Scholar 

  23. Goldman, J. and Koehl, M.A.R.: 2001, Fluid dynamic design of lobster olfactory organs: Highspeed kinematic analysis of antennule flicking by Panulirus argus, Chem. Senses 26, 385–398.

    Google Scholar 

  24. Koehl, M., Koseff, J., Crimaldi, J.P., McCay, M.G., Cooper, T., Wiley, M.B. and Moore, P.A.: 2001, Lobster sniffing: Antennule design and hydrodynamic filtering of information in an odor plume, Science 294, 1948–1951.

    Google Scholar 

  25. Koehl, M.: 1996, Small-scale fluid dynamics of olfactory antennae, Mar. Fresh. Behav. Physiol. 27, 127–141.

    Google Scholar 

  26. Mead, K. and Koehl, M.A.R.: 2000, Stomatopod antennule design: The asymmetry, sampling efficiency, and ontogeny of olfactory flicking, J. Exp. Biol. 203, 3795–3808.

    Google Scholar 

  27. Koehl, M.: 2002, Transitions in function at low Reynolds number: Hair-bearing animal appendages, Math. Meth. Appl. Sci. (in press).

  28. Stacey, M., Mead, K.S. and Koehl, M.A.R.: 2002, Molecule capture by olfactory antennules: Mantis shrimp, J. Math. Biol. (in press).

  29. Gomez, G. and Atema, J.: 1996, Temporal resolution in olfaction: Stimulus integration time of lobster chemoreceptor cells, J. Exp. Biol. 199, 1771–1779.

    Google Scholar 

  30. Borroni, P. and Atema, J.: 1988, Adaptation in chemoreceptor cells I: self-adapting backgrounds determine threshold and cause parallel shift of response function, J. Compar. Physiol. A: Sens. Neural Behav. Physiol. 164, 67–74.

    Google Scholar 

  31. Borroni, P. and Atema, J.: 1989, Adaptation in chemoreceptor cells II: The effects of crossadapting backgrounds depends on spectral tuning, J. Compar. Physiol. A: Sens. Neural Behav. Physiol. 165(5), 669–678.

    Google Scholar 

  32. Barrett, T.: 1989, Nonintrusive optical measurements of turbulence and mixing in a stablystratified fluid. Ph.D. Thesis, University of California, San Diego.

    Google Scholar 

  33. Reid, R., Prausnitz, J. and Poling, B.: 1987, The Properties of Gases and Liquids. McGraw-Hill, Inc., New York.

    Google Scholar 

  34. Batchelor, G.: 1959, Small-scale variation of convected quantities like temperature in turbulent fluid, J. Fluid Mech. 5, 113–133.

    Google Scholar 

  35. Tennekes, H. and Lumley, J.: 1972, A First Course in Turbulence. The MIT Press, Cambridge.

    Google Scholar 

  36. Bendat, J. and Piersol, A.: 1986, Random Data: Analysis and Measurement Procedures, 2nd edition. John Wiley & Sons, Inc., New York.

    Google Scholar 

  37. Crimaldi, J.P., Wiley, M.B. and Koseff, J.R.: 2002, The relationship between mean and instantaneous structure in turbulent passive scalar plumes, J. Turbulence 3(014).

  38. Freidrich, R.W. and Laurent, G.: 2001, Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity, Science 291, 889–894.

    Google Scholar 

  39. Vickers, N.J., Christensen, T.A., Baker, T.C. and Hildebrand, J.G.: 2001, Odor-plume dynamics influence the brain' olfactory code, Nature 410, 466–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crimaldi, J., Koehl, M. & Koseff, J. Effects of the Resolution and Kinematics of Olfactory Appendages on the Interception of Chemical Signals in a Turbulent Odor Plume. Environmental Fluid Mechanics 2, 35–64 (2002). https://doi.org/10.1023/A:1016279617858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016279617858

Navigation