Skip to main content
Log in

Modulation of apoptosis by HIV protease inhibitors

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Advances in treatment have transformed the Human Immunodeficiency Virus (HIV) infection from a progressive and ultimately fatal disease to one that can be managed effectively by chronic suppressive antiretroviral therapy. The drugs now used to treat HIV infection not only inhibit viral replication but also have effects on cellular metabolism and homeostasis. Of particular interest to cellular immunologists, members of the HIV Protease Inhibitor (PI) class of antiretroviral agents possess intrinsic immunomodulatory and antiapoptotic properties. This review focuses on the development and use of PI together with their impact on HIV disease, immunity, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischl MA, Richman DD, Grieco MH, et al The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebocontrolled trial. N Engl J Med 1987; 317: 185-191.

    Google Scholar 

  2. Fischl MA, Richman DD, Hansen N, et al The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection. A double-blind, placebo-controlled trial. The AIDS Clinical Trials Group. Ann Intern Med 1990; 112: 727-737.

    Google Scholar 

  3. Hamilton JD, Hartigan PM, Simberkoff MS, et al A controlled trial of early versus late treatment with zidovudine in symptomatic human immunodeficiency virus infection. Results of the Veterans Affairs Cooperative Study. N Engl J Med 1992; 326: 437-443.

    Google Scholar 

  4. Volberding PA, Lagakos SW, Koch MA, et al Zidovudine in asymptomatic human immunodeficiency virus infection. A controlled trial in persons with fewer than 500 CD4-positive cells per cubic millimeter. The AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases. N Engl J Med 1990; 322: 941-949.

    Google Scholar 

  5. Yarchoan R, Klecker RW, Weinhold KJ, et al Administration of 3'-azido-3'-deoxythymidine, an inhibitor of HTLVIII/ LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1986; 1: 575-580.

    Google Scholar 

  6. Volberding PA, Lagakos SW, Grimes JM, et al The duration of zidovudine benefit in persons with asymptomatic HIV infection. Prolonged evaluation of protocol 019 of the AIDS Clinical Trials Group. Jama 1994; 272: 437-442.

    Google Scholar 

  7. Weiss RB. A.RNA Tumor Viruses (2nd rev. edn.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985.

    Google Scholar 

  8. Swanstrom RWJ Synthesis, assembly, and processing of viral proteins. In: Coffin JMHS, Varmus HE, eds. Retroviruses: New York: Cold Spring Harbor Laboratory Press, 1997: 263-334.

    Google Scholar 

  9. Debouck C The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retrov 1992; 8: 153-164.

    Google Scholar 

  10. Debouck C, Gorniak JG, Strickler JE, Meek TD, Metcalf BW, Rosenberg M Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci USA 1987; 84: 8903-8906.

    Google Scholar 

  11. Ashorn P, McQuade TJ, Thaisrivongs S, Tomasselli AG, Tarpley WG, Moss B An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection. Proc Natl Acad Sci USA 1990; 87: 7472-7476.

    Google Scholar 

  12. Dreyer GB, Metcalf BW, Tomaszek TA, Jr, et al Inhibition of human immunodeficiency virus 1 protease in vitro: Rational design of substrate analogue inhibitors. Proc Natl Acad Sci USA 1989; 86: 9752-9756.

    Google Scholar 

  13. Meek TD, Lambert DM, Dreyer GB, et al Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues. Nature 1990; 343: 90-92.

    Google Scholar 

  14. McQuade TJ, Tomasselli AG, Liu L, et al A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science 1990; 247: 454-456.

    Google Scholar 

  15. Ratner L, Haseltine W, Patarca R, et al Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 1985; 313: 277-284.

    Google Scholar 

  16. Toh H, Ono M, Saigo K, Miyata T Retroviral protease-like sequence in the yeast transposon. Nature 1985; 315: 691-692.

    Google Scholar 

  17. Katoh I, Yasunaga T, Ikawa Y, Yoshinaka Y Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 1987; 329: 654-656.

    Google Scholar 

  18. Richards AD, Roberts R, Dunn BM, Graves MC, Kay J Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases. FEBS Lett 1989; 247: 113-117.

    Google Scholar 

  19. Loeb DD, Hutchison CA, IIIrd, Edgell MH, Farmerie WG, Swanstrom R Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases. J Virol 1989; 63: 111-121.

  20. Davies DR The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 1990; 19: 189-215.

    Google Scholar 

  21. Tang J, James MN, Hsu IN, Jenkins JA, Blundell TL Structural evidence for gene duplication in the evolution of the acid proteases. Nature 1978; 271: 618-621.

    Google Scholar 

  22. Pearl LH, Taylor WR A structural model for the retroviral proteases. Nature 1987; 329: 351-354.

    Google Scholar 

  23. Darke PL, Leu CT, Davis LJ, et al Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease. J Biol Chem 1989; 264: 2307-2312.

    Google Scholar 

  24. Tomasselli AG, Olsen MK, Hui JO, et al Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease. Biochemistry 1990; 29: 264-269.

    Google Scholar 

  25. Hui JO, Tomasselli AG, Reardon IM, et al Large scale purification and refolding of HIV-1 protease from Escherichia coli inclusion bodies. J Protein Chem 1993; 12: 323-327.

    Google Scholar 

  26. Tomasselli AG, Sarcich JL, Barrett LJ, et al Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease Has substrates of the viral protease. Protein Sci 1993; 2: 2167-2176.

    Google Scholar 

  27. Tomasselli AG, Heinrikson RL Specificity of retroviral proteases: An analysis of viral and nonviral protein substrates. Methods Enzymol 1994; 241: 279-301.

    Google Scholar 

  28. Hellen C Assay methods for retroviral proteases. In: Kuo LCSJ, ed. Methods in Enzymology, Vol. 46–58. San Diego: Academic Press, 1994.

    Google Scholar 

  29. Krafft GAWG Synthetic approaches to continuous assays of retroviral proteases. In: Kuo LCSJ, ed. Methods in Enzymology San Diego: Academic Press, 1994: 70-86.

    Google Scholar 

  30. Tomasselli AG, Heinrikson RL Targeting the HIV-protease in AIDS therapy: A current clinical perspective. Biochim Biophys Acta 2000; 1477: 189-214.

    Google Scholar 

  31. Wlodawer A, Erickson JW Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 1993; 62: 543-585.

    Google Scholar 

  32. Kempf D Progress in the discovery of orally bioavailable inhibitors of HIV protease. Perspect Drug Dispos Design 1994; 2: 427-436.

    Google Scholar 

  33. Roberts NA, Martin JA, Kinchington D, et al Rational design of peptide-based HIV proteinase inhibitors. Science 1990; 248: 358-361.

    Google Scholar 

  34. Ho DD, Toyoshima T, Mo H, et al Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol 1994; 68: 2016-2020.

    Google Scholar 

  35. Kempf DJ Discovery and early development of Ritonavir and ABT-378. In: R.C. O, Flexner CW, eds. Protease Inhibitors in AIDS Therapy. New York: Mark Dekker, 2001: 49-64.

    Google Scholar 

  36. Vacca JP, Dorsey BD, Schleif WA, et al L-735,524: An orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci USA 1994; 91: 4096-4100.

    Google Scholar 

  37. Kaldor SW, Kalish VJ, Davies JF, IInd, et al Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 1997; 40: 3979-3985.

    Google Scholar 

  38. Molla A, Granneman GR, Sun E, Kempf DJ Recent developments in HIV protease inhibitor therapy. Antiviral Res 1998; 39: 1-23.

    Google Scholar 

  39. Todd S, Anderson C, Jolly DJ, Craik CS HIV protease as a target for retrovirus vector-mediated gene therapy. Biochim Biophys Acta 2000; 1477: 168-188.

    Google Scholar 

  40. Zhang ZY, Poorman RA, Maggiora LL, Heinrikson RL, Kezdy FJ Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem 1991; 266: 15591-15594.

    Google Scholar 

  41. Schramm HJ, Nakashima H, Schramm W, Wakayama H, Yamamoto N HIV-1 reproduction is inhibited by peptides derived frm the N-and C-termini of HIV-1 protease. Biochem Biophys Res Commun 1991; 179: 847-851.

    Google Scholar 

  42. Babe LM, Rose J, Craik CS Synthetic "interface" peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci 1992; 1: 1244-1253.

    Google Scholar 

  43. Franciskovich JHK, Mueller R, Chmielewski J. Bioorg Med Chem Lett 1993; 3: 765-768.

    Google Scholar 

  44. Babe LM, Rose J, Craik CS Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation. Proc Natl Acad Sci USA 1995; 92: 10069-10073.

    Google Scholar 

  45. Junker U, Escaich S, Plavec I, et al Intracellular expression of human immunodeficiency virus type 1 (HIV-1) protease variants inhibits replication of wild-type and protease inhibitorresistant HIV-1 strains in human T-cell lines. J Virol 1996; 70: 7765-7772.

    Google Scholar 

  46. Rozzelle JE, Dauber DS, Todd S, Kelley R, Craik CS Macromolecular inhibitors of HIV-1 protease. Characterization of designed heterodimers. J Biol Chem 2000; 275: 7080-7086.

    Google Scholar 

  47. Todd S, Laboissiere MC, Craik CS Yeast two-hybrid assay for examining human immunodeficiency virus protease heterodimer formation with dominant-negative inhibitors and multidrug-resistant variants. Anal Biochem 2000; 277: 247-253.

    Google Scholar 

  48. Palella FJ, Delaney KM, Moorman A, et al Declining morbidity and mortality among patients with advanced human immunodeficiency virus syndrome. N Engl J Med 1998; 338: 853-860.

    Google Scholar 

  49. Richman DD HIV therapeutics. Science 1996; 272: 1886-1888.

    Google Scholar 

  50. Danner SA, Carr A, Leonard JM, et al A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N Engl J Med 1995; 333: 1528-1533.

    Google Scholar 

  51. Kempf DJ, Marsh KC, Denissen JF, et al ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci USA 1995; 92: 2484-2488.

    Google Scholar 

  52. Sommadossi JP Pharmacological considerations in antiretroviral therapy. Antivir Ther 1998; 3: 9-12.

    Google Scholar 

  53. Hoetelmans RM, Meenhorst PL, Mulder JW, Burger DM, Koks CH, Beijnen JH Clinical pharmacology of HIV protease inhibitors: Focus on saquinavir, indinavir, and ritonavir. Pharm World Sci 1997; 19: 159-175.

    Google Scholar 

  54. Flexner C Pharmacokinetics and pharmacodynamics of HIV protease inhibitors. Infect Med 1996; 13: 16-23.

    Google Scholar 

  55. Flexner C HIV-protease inhibitors. N Engl J Med 1998; 338: 1281-1292.

    Google Scholar 

  56. Pai VB, Nahata MC Nelfinavir mesylate: A protease inhibitor. Ann Pharmacother 1999; 33: 325-339.

    Google Scholar 

  57. Flexner C Pharmacology and drug interactions of HIV protease inhibitors. In: BA C, ed. Protease Inhibitors in AIDS Therapy. Infectious Disease and Therapy. New York: Marcel Dekker, 2001: 139-159.

    Google Scholar 

  58. Glaxo Wellcome I. Agenerase (Amprenavir) Capsules Product Monograph. Research Triangle Park, NC: Glaxo Wellcome, 2000.

    Google Scholar 

  59. Glaxo Wellcome I. Agenerase (Amprenavir) Oral Solution Product Monograph. Research Triangle Park, NC: Glaco Wellcome, 2000.

    Google Scholar 

  60. Aweeka F, Jayewardene A, Staprans S, et al Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1-infected patients with and without AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol 1999; 20: 39-43.

    Google Scholar 

  61. Kravcik S, Gallicano K, Roth V, et al Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr 1999; 21: 371-375.

    Google Scholar 

  62. Collier A, Marra C, Coombs RW, Zhong L, Stone J, Nguyen B. Cerebrospinal fluid indinavir and HIVRNAlevels in patients on chronic indinavir therapy. In: Infectious Diseases Society of America 35th Annual Meeting, Washington DC, 1997.

  63. de Waziers I, Cugnenc PH, Yang CS, Leroux JP, Beaune PH Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther 1990; 253: 387-394.

    Google Scholar 

  64. Kivisto KT, Bookjans G, Fromm MF, Griese EU, Munzel P, Kroemer HK Expression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue. Br J Clin Pharmacol 1996; 42: 387-389.

    Google Scholar 

  65. Ahonen J, Olkkola KT, Neuvonen PJ Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40: 270-272.

    Google Scholar 

  66. Aranko K, Luurila H, Backman JT, Neuvonen PJ, Olkkola KT The effect of erythromycin on the pharmacokinetics and pharmacodynamics of zopiclone. Br J Clin Pharmacol 1994; 38: 363-367.

    Google Scholar 

  67. Bailey DG, Bend JR, Arnold JM, Tran LT, Spence JD Erythromycin-felodipine interaction: Magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25-33.

    Google Scholar 

  68. Edwards DJ, Bernier SM Naringin and naringenin are not the primary CYP3A inhibitors in grapefruit juice. Life Sci 1996; 59: 1025-1030.

    Google Scholar 

  69. Bailey DG, Arnold JM, Munoz C, Spence JD Grapefruit juice—felodipine interaction: Mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53: 637-642.

    Google Scholar 

  70. Kupferschmidt HH, Fattinger KE, Ha HR, Follath F, Krahenbuhl S Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355-359.

    Google Scholar 

  71. Erickson J HIV-1-protease as a target for AIDS therapy. In: Cunha B, ed. Protease Inhibitors in AIDS Therapy. Infectious Disease and Therapy. New York: Marcel Dekker, 2001: 1-25.

    Google Scholar 

  72. Deeks SG, Smith M, Holodniy M, Kahn JO HIV-1 protease inhibitors. A review for clinicians. Jama 1997; 277: 145-153.

    Google Scholar 

  73. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373: 123-126.

    Google Scholar 

  74. Wei X, Ghosh SK, Taylor ME, et al Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373: 117-122.

    Google Scholar 

  75. Coffin JM HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science 1995; 267: 483-489.

    Google Scholar 

  76. Pierson T, McArthur J, Siliciano RF Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 2000; 18: 665-708.

    Google Scholar 

  77. Schinazi R, Larder BA, Mellors JW Mutations in retroviral genes associated with drug resistance. Int Antiviral News 1997; 5: 129-142.

    Google Scholar 

  78. Erickson JW, Burt SK Structural mechanisms of HIV drug resistance. Annu Rev Pharmacol Toxicol 1996; 36: 545-571.

    Google Scholar 

  79. Schock HB, Garsky VM, Kuo LC Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity. J Biol Chem 1996; 271: 31957-31963.

    Google Scholar 

  80. Collier AC, Coombs RW, Schoenfeld DA, et al Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N Engl J Med 1996; 334: 1011-1017.

    Google Scholar 

  81. Hirsch M, Steigbigel R, Staszewski S, et al A randomized, controlled trial of indinavir, zidovudine, and lamivudine in adults with advanced human immunodeficiency virus type 1 infection and prior antiretroviral therapy. J Inf Dis 1999; 180: 659-665.

    Google Scholar 

  82. Kravcik S, Magill A, Sanghvi B, et al Comparative CD4 T cell responses of protease inhibitor containing and sparing antiretroviral regimes. HIV Clinical Trials 2001; 2: 160-170.

    Google Scholar 

  83. Albrecht MA, Bosch RJ, Hammer SM, et al Nelfinavir, efavirenz, or both after the failure of nucleoside treatment of HIV infection. N Engl J Med 2001; 345: 398-407.

    Google Scholar 

  84. Staszewski S, Morales-Ramirez J, Tashima KT, et al Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 1999; 341: 1865-1873.

    Google Scholar 

  85. Levitz SM Improvement in CD4+ cell counts despite persistently detectable HIV load [letter]. N Engl J Med 1998; 338: 1074-1075.

    Google Scholar 

  86. Hawley-Foss N, Kravcik S, Angel JB, Cameron DW, Badley AD. Effects of therapy cessation in patients with improvements in CD4 T cell number despite virologic failure In: 9th Annual Canadian Conference on HIV/AIDS Research, Montreal, Quebec, 2000 (Abstract 211).

  87. Deeks SG, Hecht FM, Swanson M, et al HIV RNA and CD4 cell count response to protease inhibitor therapy in an urban AIDS clinic: Response to both initial and salvage therapy. AIDS 1999; 13: F35-F43.

    Google Scholar 

  88. Kaufmann D, Pantaleo G, Sudre P, Telenti A CD4-cell count in HIV-1 infected individuals remaining viraemic with highly active antiretroviral therapy (HAART). Lancet 1998; 351: 723-724.

    Google Scholar 

  89. Cohen J Failure isn't what it used to be...but neither is success. Science 1998; 279: 1133-1134.

    Google Scholar 

  90. Ledergerber B, Egger M, Opravil M, et al Clinical progression and virological failure on highly active antiretroviral therapy in HIV-1 patients: A prospective cohort study. Swiss HIV Cohort Study. Lancet 1999; 353: 863-868.

    Google Scholar 

  91. Deeks SG, Barbour JD, Martin JN, Swanson MS, Grant RM Sustained CD4+ T cell response after virologic failure of protease inhibitor-based regimens in patients with human immunodeficiency virus infection. J Infect Dis 2000; 181: 946-953.

    Google Scholar 

  92. Belec L, Piketty C, Si-Mohamed A, et al High levels of drugresistant human immunodeficiency virus variants in patients exhibiting increasing CD4+ T cell counts despite virologic failure of protease inhibitor-containing antiretroviral combination therapy. J Infect Dis 2000; 181: 1808-1812.

    Google Scholar 

  93. Telenti A, Egger M, Kaufmann D, et al CD4 T cell counts in HIV-infected individuals remaining viraemic with highly active antiretroviral therapy followed in the Swiss HIV Cohort Study. Antiviral Ther 1998; 3 (suppl 1): 53.

    Google Scholar 

  94. Grabar S, Le Moing V, Goujard C, et al Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy. Ann Intern Med 2000; 133: 471-173.

    Google Scholar 

  95. Mezzaroma I, Carlesimo M, Pinter E, et al Clinical and immunologic response without decrease in virus load in patients with AIDS after 24 months of highly active antiretroviral therapy. Clin Infect Dis 1999; 29: 1423-1430.

    Google Scholar 

  96. Autran B, Carcelain G, Lis TS, et al Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112-116.

    Google Scholar 

  97. Carr A, Emery S, Kelleher A, Law M, Cooper DA CD8+ lymphocyte responses to antiretroviral therapy of HIV infection. J Acquired Immune Defic Syndr Hum Retrovirol 1996; 13: 320-326.

    Google Scholar 

  98. Mellors JW, Munoz A, Giorgi JV, et al Plasma viral load and CD4+ lymphocytes as prognostic markers ofHIV-1 infection. Ann Intern Med 1997; 126: 946-954.

    Google Scholar 

  99. Arnaout RA, Lloyd AL, O'Brien TR, Goedert JJ, Leonard JM, Nowak MA A simple relationship between viral load and survival time in HIV-1 infection. Proc Natl Acad Sci USA 1999; 96: 11549-11553.

    Google Scholar 

  100. O'Brien TR, Blattner WA, Waters D, et al Serum HIV-1 RNA levels and time to development of AIDS in the Multicenter Hemophilia Cohort Study. JAMA 1996; 276: 105-110.

    Google Scholar 

  101. Mellors JW, et al Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167-1170.

    Google Scholar 

  102. Saksela K, Stevens CE, Rubinstein P, Taylor PE, Baltimore D HIV-1 messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med 1995; 123: 641-648.

    Google Scholar 

  103. Hawley-Foss N, Mbisa G, Lum JJ, et al Effect of therapy cessation during a discordant response to HAART; Implications for scheduled therapeutic interruptions. Clin Infect Dis 2001; 33: 344-348.

    Google Scholar 

  104. Mezzaroma I, Carlesimo M, Pinter E, et al Long-term evaluation of T-cell subsets and T-cell function after HAART in advanced stage HIV-1 disease. AIDS 1999.

  105. Miller V, Rottmann C, Hertogs K, et al. Mega-HAART, resistance and drug holidays. In: Program and Abstracts for the 2nd InternationalWorkshop on Salvage Therapy for HIV Infection, Toronto, 1999 (Abstract 30).

  106. Imperiale S, Carlier H. Sustained virologic suppression in subjects switched from protease inhibitors (PIs) to nevirapine (NVP). In: 1st International AIDS Society Conference on HIV Pathogenesis and Treatment, Buenos Aires, 2001 (Abstract 419).

  107. Badsi E, Salord J. Switching a protease inhibitor (PI) for a nonnucleosidic reverse transcriptase inhibitor (NNRTI): Study of a cohort of 59 HIV patients. In: 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 2000 (Abstract 1539).

  108. Casado J, Arrizabalaga J, Antela A, et al. Long-term efficacy and tolerance of switching the protease inhibitor for nonnucleoside reverse transcriptase inhibitors: A 52-week, multicenter, prospective study. In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 2001 (Abstract 673).

  109. Becker S, Rachlis A, Gill J, et al. Successful substitution of protease inhibitors with Efavirenz (EFV) in patients with undetectable viral loads—a prospective, randomized, multicenter, open-label study (DMP 049). In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 2001 (Abstract 20).

  110. Clumeck N, Goebel F, Rozenbaum W, et al Simplification with abacavir-based triple nucleoside therapy versus continued protease inhibitor-based highly active antiretroviral therapy in HIV-1-infected patients with undetectable plasma HIV-1 RNA. Aids 2001; 15: 1517-1526.

    Google Scholar 

  111. Johnson D, Squires K. Safety and efficacy of modifying ART by switching from a protease inhibitor (PI)-based regimen to Efavirenz (EFV) plus Combivir (CMV). In: 1st International AIDS Society Conference on HIV Pathogenesis and Treatment, Buenos Aires, 2001 (Abstract 423).

  112. Knechten H, Sturner K, Hohn C, Braun P. 24 week follow-up of patients switching from protease inhibitor (PI) containing regimen with Lamivudine (3TC) and Stavudine (d4T) or Zidovudine (AZT) to an Efavirenz based therapy. In: 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 2000 (Abstract 1532).

  113. Maggiolo F, Migliorino M, Pravettoni G, Rizzi M, Caprioli S, Suter F. Management of PI-associated metabolic changes by substitution with Efavirenz in virologically controlled HIV+ persons. In: 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 2000 (Abstract 1533).

  114. Martinez E, Garcia-Viejo MA, Blanco JL, et al Impact of switching from human immunodeficiency virus type 1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. Clin Infect Dis 2000; 31: 1266-1273.

    Google Scholar 

  115. Raffi F, Bonnet B, Ferre V, et al. Substitution of NNRTI for protease inhibitor in patients on combination therapy with undetectable viral loads. In: 6th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 1999 (Abstract 381).

  116. Walli R, Huster K, GBogner R, Goebel F. Switching from PI to ABC improves insulin sensitivity and fasting lipids—2 month follow up. In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 2001 (Abstract 672).

  117. Barreiro P, Soriano V, Blanco F, Casimiro C, de la Cruz JJ, Gonzalez-Lahoz J Risks and benefits of replacing protease inhibitors by nevirapine in HIV-infected subjects under longterm successful triple combination therapy. Aids 2000; 14: 807-812.

    Google Scholar 

  118. Blick G, Greiger-Zanlungo P, Sharfuddin M, Garton T, Hatton E. Successful maintenance of low HIV-1 viremia after early vs. late switching from protease inhibitor (PI)-containing HAART to PI-sparing HAART containing either nevirapine (NVP), Efavirenz (EFV), or Abacavir (ABC). In: 1st International AIDS Society Conference on HIV Pathogenesi and Treatment, Buenos Aires, 2001 (Abstract 422).

  119. Martinez E, Conget I, Lozano L, Casamitjana R, Gatell JM Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. Aids 1999; 13: 805-810.

    Google Scholar 

  120. Martinez E, Romeu J, Garcia-Viejo MA, et al. An open randomized study on the replacement of HIV-1 protease inhibitors by Efavirenz in chronically suppressed HIV-1 infected patients with lipodystrophy. In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, 2001 (Abstract 668).

  121. Opravil M, Hirschel B, Lazzarin A, et al. Simplified maintenance therapy with Abacavir + Lamivudine + Zidovudine in patients with HAART-induced long-term suppression of HIV-1 RNA: Final results. In: 8th Conference on Retroviruses and Opportunistic Infections, Toronto, Ontario, Canada, 2000 ( Abstract 476).

  122. Negredo E, Masana L, Ribalta J, et al. Nuclear magnetic resonance (NMR)-assessed changes of lipid metabolism (LM) in HIV-1 infected patients (PTS) with lipodystrophy (LPD) after switching the protease inhibitor (PI) by Nevirapine (NVP). In: 1st International AIDS Society Conference on HIV Pathogenesis and Treatment, Buenos Aires, 2001 (Abstract 485).

  123. Barreiro P, Soriano V, Casas E, Gonzalez-Lahoz J. Different degree of immune recovery in HIV-infected patients receiving regimens with protease inhibitors or non-nucleosides. In: 41st Intersicence Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 2001.

  124. Andre P, Groettrup M, Klenerman P, et al An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci USA 1998; 95: 13120-13124.

    Google Scholar 

  125. Schmidtke G, Holzhutter HG, Bogyo M, et al How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem 1999; 274: 35734-35740.

    Google Scholar 

  126. Berthold HK, Parhofer KG, Ritter MM, et al Influence of protease inhibitor therapy on lipoprotein metabolism. J Intern Med 1999; 246: 567-575.

    Google Scholar 

  127. Lenhard JM, Weiel JE, Paulik MA, Furfine ES Stimulation of vitamin A(1) acid signaling by the HIV protease inhibitor indinavir. Biochem Pharmacol 2000; 59: 1063-1068.

    Google Scholar 

  128. Schutt M, Meier M, Meyer M, Klein J, Aries SP, Klein HH The HIV-1 protease inhibitor indinavir impairs insulin signalling in HepG2 hepatoma cells. Diabetologia 2000; 43: 1145-1148.

    Google Scholar 

  129. Nathoo S, Serghides L, Walmsley S, Kain KC. CD36 deficiency induced by HIV antiretroviral therapy and its reversal by PPAR gamma-RXR alpha agonists. From the Past: Looking to future successes. In: 4th Annual OHTN Research Day, Toronto, Canada, 2001: 36.

  130. Lee CG, Gottesman MM, Cardarelli CO, et al HIV-1 protease inhibitors are substrates for theMDR1multidrug transporter. Biochemistry 1998; 37: 3594-3601.

    Google Scholar 

  131. Zhang B, MacNaul K, Szalkowski D, Li Z, Berger J, Moller DE Inhibition of adipocyte differentiation by HIV protease inhibitors. J Clin Endocrinol Metab 1999; 84: 4274-4277.

    Google Scholar 

  132. Wentworth JM, Burris TP, Chatterjee VK HIV protease inhibitors block human preadipocyte differentiation, but not via the PPARgamma/RXR heterodimer. J Endocrinol 2000; 164: R7-R10.

    Google Scholar 

  133. Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 1999; 56: 383-389.

    Google Scholar 

  134. Chavan S, Kodoth S, Pahwa R, Pahwa S The HIV protease inhibitor Indinavir inhibits cell-cycle progression in vitro in lymphocytes of HIV-infected and uninfected individuals. Blood 2001; 98: 383-389.

    Google Scholar 

  135. Gruber A, Wheat JC, Kuhen KL, Looney DJ, Wong-Staal F Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. J Biol Chem 2001; 15: 15.

    Google Scholar 

  136. Sloand EM, Young NS, Sato T, Kim S, Maciejewski JP Inhibition of interleukin-1beta-converting enzyme in human hematopoietic progenitor cells results in blockade of cytokinemediated apoptosis and expansion of their proliferative potential. Exp Hematol 1998; 26: 1093-1099.

    Google Scholar 

  137. Weichold FF, Bryant JL, Pati S, Barabitskaya O, Gallo RC, Reitz MS, Jr. HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J Hum Virol 1999; 2: 261-269.

    Google Scholar 

  138. Sloand EM, Maciejewski J, Kumar P, Kim S, Chaudhuri A, Young N Protease inhibitors stimulate hematopoiesis and decrease apoptosis and ICE expression in CD34(+) cells. Blood 2000; 96: 2735-2739.

    Google Scholar 

  139. Mastroianni CM, Mengoni F, Lichtner M, et al Ex vivo and in vitro effect of human immunodeficiency virus protease inhibitors on neutrophil apoptosis. J Infect Dis 2000; 182: 1536-1539.

    Google Scholar 

  140. Phenix BN, Lum JJ, Sanchez-Dardon J, Badley AD Antiapoptotic mechanism of HIV protease inhibitors: Preventing mitochondrial potential loss. Blood 2001; 98: 1078-1085.

    Google Scholar 

  141. Phenix BN, Angel JB, Mandy F, et al Decreased HIVassociated T cell apoptosis by HIV protease inhibitors. AIDS Res Hum Retroviruses 2000; 16: 559-567.

    Google Scholar 

  142. Lu W, Andrieu JM HIV protease inhibitors restore impaired T-cell proliferative response in vivo and in vitro: A viral-suppression-independent mechanism. Blood 2000; 96: 250-258.

    Google Scholar 

  143. Roger PM, Breittmayer JP, Arlotto C, et al Highly active anti-retroviral therapy (HAART) is associated with a lower level of CD4+ T cell apoptosis in HIV-infected patients. Clin Exp Immunol 1999; 118: 412-416.

    Google Scholar 

  144. Domingo P, Matias-Guiu X, Pujol RM, et al Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. Aids 1999; 13: 2261-2267.

    Google Scholar 

  145. Dowell P, Flexner C, Kwiterovich PO, Lane MD Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem 2000; 275: 41325-41332.

    Google Scholar 

  146. Phenix BN, Mandy F, Chambers KA, et al. Prevention of HIV associated T cell apoptosis by inhibitors of HIV protease. In: 6th Conf. on Retroviruses and Opportunistic Infections, Chicago, 1999.

  147. Sloand EM, Kumar PN, Kim S, Chaudhuri A, Weichold FF, Young NS Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4(+) T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood 1999; 94: 1021-1027.

    Google Scholar 

  148. Maciejewski JP, Weichold FF, Young NS HIV-1 suppression of hematopoiesis in vitro mediated by envelope glycoprotein and TNF-alpha. J Immunol 1994; 153: 4303-4310.

    Google Scholar 

  149. Zella D, Barabitskaja O, Burns JM, et al Interferon-gamma increases expression of chemokine receptors CCR1, CCR3, and CCR5, but not CXCR4 in monocytoid U937 cells. Blood 1998; 91: 4444-4450.

    Google Scholar 

  150. Smith DJ, McGuire MJ, Tocci MJ, Thiele DL IL-1 beta convertase (ICE) does not play a requisite role in apoptosis induced in T lymphoblasts by Fas-dependent or Fas-independent CTL effector mechanisms. J Immunol 1997; 158: 163-170.

    Google Scholar 

  151. Chauduri A, Sloand E, Young N, Maciejewski J Inhibition of apoptotic transduction pathway in human hematopoietic cells using synthetic caspase inhibitor Y-VAD. Blood 1999; 94: 2143.

    Google Scholar 

  152. Tomasselli AG, Hui JO, Adams L, et al Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus. J Biol Chem 1991; 266: 14548-14553.

    Google Scholar 

  153. Strack PR, Frey MW, Rizzo CJ, et al Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 1996; 93: 9571-9576.

    Google Scholar 

  154. Jarvis B, Faulds D Nelfinavir. A review of its therapeutic efficacy in HIV infection. Drugs 1998; 56: 147-167.

    Google Scholar 

  155. Markowitz M, Conant M, Hurley A, et al A preliminary evaluation of nelfinavir mesylate, an inhibitor of human immunodeficiency virus (HIV)-1 protease, to treat HIV infection. J Infect Dis 1998; 177: 1533-1540.

    Google Scholar 

  156. Antoni BA, Sabbatini P, Rabson AB, White E Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection. J Virol 1995; 69: 2384-2392.

    Google Scholar 

  157. Kobayashi N, Hamamoto Y, Yamamoto N, Ishii A, Yonehara M, Yonehara S Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication. Proc Natl Acad Sci USA 1990; 87: 9620-9624.

    Google Scholar 

  158. Sarin A, Clerici M, Blatt SP, Hendrix CW, Shearer GM, Henkart PA Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J Immunol 1994; 153: 862-872.

    Google Scholar 

  159. Chinnaiyan AM, Woffendin C, Dixit VM, Nabel GJ The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nat Med 1997; 3: 333-337.

    Google Scholar 

  160. Vocero-Akbani AM, Heyden NV, Lissy NA, Ratner L, Dowdy SF Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med 1999; 5: 29-33.

    Google Scholar 

  161. Lum JJ, Pilon AA, Sanchez-Dardon J, et al. Induction of cell death in HIV-infected macrophages and resting memory CD4 T cells by TRAIL/apo2L, J Virol 2001; 75(22): 11128-11136.

    Google Scholar 

  162. Rowland LP, ed. In: Merritt's Textbook of Neurology. Philadelphia, PA: Williams and Wilkins, 1995: 742-749.

    Google Scholar 

  163. Williams DB, Windebank JA. In: Dyck PJ, Thoma PK, Griffin JW, Low PA, Podulso JF, eds. Peripheral Neuropathy. Philadelphia, PA: Williams and Wilkins, 1993: 742-749.

    Google Scholar 

  164. Rosen DR, Siddique T, Patterson D, et al Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.

    Google Scholar 

  165. Deng HX, Hentati A, Tainer JA, et al Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993; 261: 1047-1051.

    Google Scholar 

  166. Martin LJ Neuronal death in amyotrophic lateral sclerosis is apoptosis: Possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 1999; 58: 459-471.

    Google Scholar 

  167. Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan J Inhibition of ICE slows ALS in mice. Nature 1997; 388: 31.

    Google Scholar 

  168. Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559-562.

    Google Scholar 

  169. Vukosavic S, Stefanis L, Przedborski S. In: Soc Neurosci, 1999: 1304 (Abstract 25).

  170. Ilzecka J, Stelmasiak Z, Dobosz B Interleukin-1beta converting enzyme/Caspase-1 (ICE/Caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand 2001; 103: 255-258.

    Google Scholar 

  171. Shinoe T, Wanaka A, Nikaido T, et al Upregulation of the pro-apoptotic BH3-only peptide harakiri in spinal neurons of amyotrophic lateral sclerosis patients. Neurosci Lett 2001; 313: 153-157.

    Google Scholar 

  172. Vukosavic S, Dubois-Dauphin M, Romero N, Przedborski S Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 1999; 73: 2460-2468.

    Google Scholar 

  173. Grigg JM, Savill JS, Sarraf C, Haslett C, Silverman M Neutrophil apoptosis and clearance from neonatal lungs. Lancet 1991; 338: 720-722.

    Google Scholar 

  174. Wang SD, Huang KJ, Lin YS, Lei HY Sepsis-induced apoptosis of the thymocytes in mice. J Immunol 1994; 152: 5014-5021.

    Google Scholar 

  175. Barke RA, Roy S, Chapin RB, Charboneau R The role of programmed cell death (apoptosis) in thymic involution following sepsis. Arch Surg 1994; 129: 1256-1261; discussion 1261-1252.

    Google Scholar 

  176. Ayala A, Herdon CD, Lehman DL, Ayala CA, Chaudry IH Differential induction of apoptosis in lymphoid tissues during sepsis: Variation in onset, frequency, and the nature of the mediators. Blood 1996; 87: 4261-4275.

    Google Scholar 

  177. Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG, Karl IE Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T-and B-cell-deficient mice. Crit Care Med 1997; 25: 1298-1307.

    Google Scholar 

  178. Hotchkiss RS, Swanson PE, Freeman BD, et al Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27: 1230-1251.

    Google Scholar 

  179. Ayala A, Xu YX, Chung CS, Chaudry IH Does Fas ligand or endotoxin contribute to thymic apoptosis during polymicrobial sepsis? Shock 1999; 11: 211-217.

    Google Scholar 

  180. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, et al Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 1997; 186: 1831-1841.

    Google Scholar 

  181. Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL Apoptosis in sepsis: A new target for therapeutic exploration. Faseb J 2001; 15: 879-892.

    Google Scholar 

  182. Coopersmith CM, O'Donnell D, Gordon JI Bcl-2 inhibits ischemia-reperfusion-induced apoptosis in the intestinal epithelium of transgenic mice. Am J Physiol 1999; 276: G677-686.

    Google Scholar 

  183. Rodriguez I, Matsuura K, Khatib K, Reed JC, Nagata S, Vassalli P A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J Exp Med 1996; 183: 1031-1036.

    Google Scholar 

  184. Yin XM, Wang K, Gross A, et al Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886-891.

    Google Scholar 

  185. Phenix BN, Lum JJ, Nie Z, Sanchez-Dardon J, Badley AD Antiapoptotic mechanism of HIV protease inhibitors: Preventing mitochondrial transmembrane potential loss. Blood 2001; 98(4): 1078-1085.

    Google Scholar 

  186. Adrie C, Bachelet M, Vayssier-Taussat M, et al Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 2001; 164: 389-395.

    Google Scholar 

  187. Guegan C, Vila M, Rosoklija G, Hays AP, Przedborski S Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 2001; 21: 6569-6576.

    Google Scholar 

  188. Kotler DP, Shimada T, Snow G, et al Effect of combination antiretroviral therapy upon rectal mucosal HIV RNA burden and mononuclear cell apoptosis. AIDS 1998; 12: 597-604.

    Google Scholar 

  189. Aries SP, Weyrich K, Schaaf B, Hansen F, Dennin RH, Dalhoff K Early T-cell apoptosis and Fas expression during antiretroviral therapy in individuals infected with human immunodeficiency virus-1. Scand J Immunol 1998; 48: 86-91.

    Google Scholar 

  190. Badley AD, Dockrell DH, Algeciras A, et al In vivo analysis of Fas/FasL interactions in HIV-infected patients. J Clin Invest 1998; 102: 79-87.

    Google Scholar 

  191. Johnson N, Parkin JM Anti-retroviral therapy reverses HIVassociated abnormalities in lymphocyte apoptosis. Clin Exp Immunol 1998; 113: 229-234.

    Google Scholar 

  192. Gougeon ML, Lecoeur H, Sasaki Y Apoptosis and the CD95 system in HIV disease: Impact of highly active anti-retroviral therapy (HAART). Immunol Lett 1999; 66: 97-103.

    Google Scholar 

  193. Bohler T, Walcher J, Holzl-Wenig G, et al Early effects of antiretroviral combination therapy on activation, apoptosis and regeneration of T cells in HIV-1-infected children and adolescents. Aids 1999; 13: 779-789.

    Google Scholar 

  194. Chavan SJ, Tamma SL, Kaplan M, Gersten M, Pahwa SG Reduction in T cell apoptosis in patients with HIV disease following antiretroviral therapy. Clin Immunol 1999; 93: 24-33.

    Google Scholar 

  195. Dockrell DH, Badley AD, Algeciras-Schimnich A, et al Activation-induced CD4+ T cell death in HIV-positive individuals correlates with Fas susceptibility, CD4+ T cell count, and HIV plasma viral copy number. AIDS Res Hum Retroviruses 1999; 15: 1509-1518.

    Google Scholar 

  196. Dieye TN, Van Vooren JP, Delforge ML, Liesnard C, Devleeschouwer M, Farber CM Spontaneous apoptosis and highly active antiretroviral therapy (HAART). Biomed Pharmacother 2000; 54: 16-20.

    Google Scholar 

  197. Pandolfi F, Pierdominici M, Marziali M, et al Low-dose IL-2 reduces lymphocyte apoptosis and increases naive CD4 cells in HIV-1 patients treated with HAART. Clin Immunol 2000; 94: 153-159.

    Google Scholar 

  198. Ledru E, Christeff N, Patey O, de Truchis P, Melchior JC, Gougeon ML Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antiretroviral therapy: Contribution to the development of human immunodeficiency virusassociated lipodystrophy syndrome. Blood 2000; 95: 3191-3198.

    Google Scholar 

  199. Amendola A, Poccia F, Martini F, et al Decreased CD95 expression on naive T cells from HIV-infected persons undergoing highly active anti-retroviral therapy (HAART) and the influence of IL-2 low dose administration. Irhan Study Group. Clin Exp Immunol 2000; 120: 324-332.

    Google Scholar 

  200. Grelli S, Campagna S, Lichtner M, et al Spontaneous and anti-Fas-induced apoptosis in lymphocytes from HIV-infected patients undergoing highly active anti-retroviral therapy. Aids 2000; 14: 939-949.

    Google Scholar 

  201. Ensoli F, Fiorelli V, Alario C, et al Decreased T cell apoptosis and T cell recovery during highly active antiretroviral therapy (HAART). Clin Immunol 2000; 97: 9-20.

    Google Scholar 

  202. Nielsen SD, Sorensen TU, Ersboll AK, et al Decrease in immune activation in HIV-infected patients treated with highly active antiretroviral therapy correlates with the function of hematopoietic progenitor cells and the number of naiveCD4+ cells. Scand J Infect Dis 2000; 32: 597-603.

    Google Scholar 

  203. Roger PM, Breittmayer JP, Cottalorda J, et al Persistent viral load in patients on HAART is associated with a higher level of activation-induced apoptosis of CD4(+) T cells. J Antimicrob Chemother 2001; 47: 109-112.

    Google Scholar 

  204. Grelli S, Di Traglia L, Matteucci C, et al Changes in apoptosis after interruption of potent antiretroviral therapy in patients with maximal HIV-1-RNA suppression. Aids 2001; 15: 1178-1181.

    Google Scholar 

  205. Caggiari L, Zanussi S, Crepaldi C, et al Different rates of CD4+ and CD8+ T-cell proliferation in interleukin-2-treated human immunodeficiency virus-positive subjects. Cytometry 2001; 46: 233-237.

    Google Scholar 

  206. Dyrhol-Riise AM, Stent G, Rosok BI, Voltersvik P, Olofsson J, Asjo B The Fas/FasL system and T cell apoptosis in HIV-1-infected lymphoid tissue during highly active antiretroviral therapy. Clin Immunol 2001; 101: 169-179.

    Google Scholar 

  207. Dyrhol-Riise AM, Ohlsson M, Skarstein K, et al T cell proliferation and apoptosis in HIV-1-infected lymphoid tissue: Impact of highly active antiretroviral therapy. Clin Immunol 2001; 101: 180-191.

    Google Scholar 

  208. Domingo P, Matias-Guiu X, Pujol RM, et al Switching to nevirapine decreases insulin levels but does not improve subcutaneous adipocyte apoptosis in patients with highly active antiretroviral therapy-associated lipodystrophy. J Infect Dis 2001; 184: 1197-1201.

    Google Scholar 

  209. Hengge UR, Borchard C, Esser S, Schroder M, Mirmohammadsadegh A, Goos M Lymphocytes proliferate in blood and lymph nodes following interleukin-2 therapy in addition to highly active antiretroviral therapy. Aids 2002; 16: 151-160.

    Google Scholar 

  210. Pinto LM, Lecoeur H, Ledru E, Rapp C, Patey O, Gougeon ML Lack of control of T cell apoptosis under HAART. Influence of therapy regimen in vivo and in vitro. Aids 2002; 16: 329-339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phenix, B.N., Cooper, C., Owen, C. et al. Modulation of apoptosis by HIV protease inhibitors. Apoptosis 7, 295–312 (2002). https://doi.org/10.1023/A:1016168411221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016168411221

Navigation