Skip to main content
Log in

The Relationship Between the Glass Transition Temperature and Water Vapor Absorption by Poly(vinylpyrrolidone)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Water associated with amorphous solids is known to affect significantly the physical and chemical properties of dosage form ingredients. An analysis of water vapor absorption isotherms of poly(vinylpyrrolidone) measured in this and other laboratories, over the range −40 to 60°C, along with the measurement of the glass transition temperature of poly(vinylpyrrolidone) as a function of water content is reported. It is observed that the amount of water vapor absorbed at a particular relative humidity increases with decreasing temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature the state of the solid changes from a highly viscous glass to a much less viscous rubber in the region where absorbed water appears to enter into a “solvent-like” state. Further, the apparent “tightly bound” state, observed at low relative humidities, appears to exist when the polymer enters into a very viscous glassy state. It is concluded that the apparent states of water and polymer are interrelated in a dynamic manner and, therefore, that they cannot be uncoupled by simple thermodynamic analyses based only on a water-binding model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Zografi. Drug Dev. Indust. Pharm. 14:1905–1926 (1988).

    Google Scholar 

  2. C. Ahlneck. Some Studies on the Effect of Moisture Sorption on Stability, Compatibility, and Compaction Properties of Drugs and Excipients in the Solid State, Ph.D. thesis, Uppsala University, Uppsala, Sweden, 1988, pp. 28–31.

  3. M. J. Tait, S. Ablett, and F. W. Wood. J. Coll. Interface Sci. 41:594–603 (1972).

    Google Scholar 

  4. F. Khan and N. Pilpel. Power Tech. 50:237–241 (1987).

    Google Scholar 

  5. C. van den Berg. Vapor Sorption Equilibria and Other Water-Starch Interactions: A Physiochemical Approach, Ph.D. thesis, Agricultural University of Wageningen, Wageningen, 1981.

  6. S. Brunauer, P. H. Emmett, and E. Teller. J. Am. Chem. Soc. 60:309–319 (1938).

    Google Scholar 

  7. G. Zografi and M. J. Kontny. Pharm. Res. 3:187–194 (1986).

    Google Scholar 

  8. R. Huettenrauch and J. Jacob. Die Pharm. 32:241–242 (1977).

    Google Scholar 

  9. M. J. Kontny and C. A. Mulski. Int. J. Pharm. 54:79–85 (1989).

    Google Scholar 

  10. R. G. Hollenbeck, G. E. Peck, and D. O. Kildsig. J. Pharm. Sci. 67:1599–1606 (1978).

    Google Scholar 

  11. M. J. Hageman. Drug Dev. Indust. Pharm. 14:2047–2070 (1988).

    Google Scholar 

  12. H. Levine and L. Slade. In F. Franks (ed.), Water Sciences Reviews, Vol. 3, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  13. A. P. Mackenzie and D. H. Rasmussen. In H. H. G. Jellineck (ed.), Water Structure at the Water-Polymer Interface, Plenum, New York, 1972, pp. 146–172.

    Google Scholar 

  14. H. Nyquist. Int. J. Pharm. Tech. Prod. Mfr. 4:47–48 (1983).

    Google Scholar 

  15. L. Greenspan. J. Res. N.B.S. 81A:89–96 (1977).

    Google Scholar 

  16. P. W. Winston and D. H. Bates. Ecology 41:232–237 (1960).

    Google Scholar 

  17. Y. Y. Tan and G. Challa. Polymer 17:739–740 (1976).

    Google Scholar 

  18. M. Sigiura and E. Fujii. Kogyo Kagaku Zasshi 66:1228–1230 (1963).

    Google Scholar 

  19. M. L. Williams, R. F. Landel, and J. D. Ferry. J. Am. Chem. Soc. 77:3701–3707 (1955).

    Google Scholar 

  20. A. R. Urquart and A. M. Williams. J. Textile Inst. 15:T559–T573 (1924).

    Google Scholar 

  21. H. Batzer and U. Kreibich. Polymer Bull. 5:585–590 (1981).

    Google Scholar 

  22. H. B. Bull. J. Am. Chem. Soc. 66:1499–1507 (1944).

    Google Scholar 

  23. S. R. Kakivaya and C. A. J. Hoeve. Proc. Natl. Acad. Sci. USA 72:3505–3507 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oksanen, C.A., Zografi, G. The Relationship Between the Glass Transition Temperature and Water Vapor Absorption by Poly(vinylpyrrolidone). Pharm Res 7, 654–657 (1990). https://doi.org/10.1023/A:1015834715152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015834715152

Navigation