Skip to main content
Log in

Are Reduction Potentials of Antifungal Agents Relevant to Activity?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Cyclic voltammetry data were obtained for several categories of fungicidal agents including quinones (akrobomycin, podosporin A), iminium ions and precursors (pyridazines, 15-azahomosterol, griseofulvin-4′-oxime), and metal derivatives of chelators (pyridine-2-aldehyde thiosemicarbazones). The reductions usually occurred in the range of −0.7 to +0.3 V. Reduction potentials provide information on the feasibility of electron transfer in vivo. Catalytic production of oxidative stress from redox cycling is a possible mode of action. Alternatively, there may be interference with normal electron transport chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Kovacic, P. W. Crawford, M. D. Ryan, and V. C. Nelson. Bioelectrochem. Bioenerg. 15:305–316 (1986).

    Google Scholar 

  2. P. Kovacic, W. J. Popp, J. R. Ames, and M. D. Ryan. Anti-Cancer Drug Des. 3:205–216 (1988).

    Google Scholar 

  3. J. R. Ames, M. D. Ryan, and P. Kovacic. J. Free Rad. Biol. Med. 2:377–391 (1986) (and references therein).

    Google Scholar 

  4. J. R. Ames, U. Hollstein, A. R. Gagneux, M. D. Ryan, and P. Kovacic. J. Free Rad. Biol. Med. 3:85–96 (1987) (and references therein).

    Google Scholar 

  5. J. R. Ames, M. D. Ryan, D. L. Klayman, and P. Kovacic. J. Free Rad. Biol. Med. 1:353–361 (1985).

    Google Scholar 

  6. P. Kovacic, J. R. Ames, D. L. Rector, M. Jawdosiuk, and M. D. Ryan. J. Free Rad. Biol. Med. 6:131–139 (1989) (and references therein).

    Google Scholar 

  7. P. Kovacic, J. R. Ames, and M. D. Ryan. Bioorg. Chem. 16:149–164 (1988).

    Google Scholar 

  8. P. Kovacic, J. R. Ames, and M. D. Ryan. Bioelectrochem. Bioenerg. 21:269–278 (1989) (and references therein).

    Google Scholar 

  9. H. Kappus and H. Sies. Experientia 37:1233–1258 (1981).

    Google Scholar 

  10. L. W. Oberley, In L. W. Oberley (ed.), Superoxide Dismutase, Vol. 2, CRC Press, Boca Raton, FL, 1982, pp. 144–159.

    Google Scholar 

  11. J. L. Vennerstrom and J. W. Eaton. J. Med. Chem. 31:1269–1277 (1988).

    Google Scholar 

  12. H. Lyr. In M. R. Siegel and H. D. Sisler (eds.), Antifungal Compounds, Vol. 1, Marcel Dekker, New York, 1977, pp. 301–332.

    Google Scholar 

  13. S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka, and M. Shibuya. J. Org. Chem. 45:1473–1477 (1980).

    Google Scholar 

  14. H. K. Parwana, G. Singh, and P. Talwar. Inorg. Chim. Acta 108:87–89 (1985).

    Google Scholar 

  15. B. Dash, P. K. Mahapatra, D. Panda, and J. M. Pattnaik. J. Ind. Chem. Soc. 61:1061–1064 (1984).

    Google Scholar 

  16. K. N. Thimmaiah, G. T. Chandrappa, W. D. Lloyd, and C. Párkáanyi. Trans. Met. Chem. 10:299–302 (1985).

    Google Scholar 

  17. K. N. Thimmaiah, G. T. Chandrappa, W. D. Lloyd, and C. Párkáyni. Inorg. Chim. Acta 107:1–4 (1985).

    Google Scholar 

  18. S. Rich. In D. C. Torgeson (ed.), Fungicides, Vol. 2, Academic Press, New York, 1969, pp. 447–476.

    Google Scholar 

  19. I. Wilson, P. Wardman, T.-S. Lin, and A. C. Sartorelli. J. Med. Chem. 29:1381–1384 (1986) (and references therein).

    Google Scholar 

  20. N. R. Bachur, M. V. Gee, and R. D. Friedman. Cancer Res. 42:1078–1081 (1982).

    Google Scholar 

  21. V. Betina and S. Kuzela. Chem. Biol. Interact. 62:179–189 (1987).

    Google Scholar 

  22. K. Imamura, A. Odagawa, K. Tanabe, Y. Hayakawa, and N. Òtake. J. Antibiot. 37:83–84 (1984).

    Google Scholar 

  23. H. A. Weber, N. C. Baenziger, and J. B. Gloer. J. Org. Chem. 53:4567–4569 (1988).

    Google Scholar 

  24. H. Berg, G. Horn, U. Luthardt, and W. Ihn. Bioelectrochem. Bioenerg. 8:537–553 (1981).

    Google Scholar 

  25. H. Lyr. In H. Lyr (ed.), Modern Selective Fungicides—Properties, Applications, and Mechanisms of Action, Longman, London, 1987, pp. 75–89.

    Google Scholar 

  26. H. Lyr and P. Werner. Pestic. Biochem. Physiol. 8:69–76 (1982).

    Google Scholar 

  27. V. A. Shapovalov. Electrokhimiya 20:1383–1385 (1984).

    Google Scholar 

  28. J. R. Rowlands and E. M. Gause. Appl. Microbiol. 18:650–655 (1969).

    Google Scholar 

  29. M. E. Peover. J. Chem. Soc. 4540–4549 (1962).

  30. E. D. Weinberg. In M. E. Wolff (ed.), Burger's Medicinal Chemistry, Part 2, Wiley Interscience, New York, 1979, pp. 531–541.

    Google Scholar 

  31. R. E. Dolle and L. I. Kruse. Chem. Comm. 133–135 (1988).

  32. A. Kerkenaar. In H. Lyr (ed.), Modern Selective Fungicides—Properties, Applications, and Mechanisms of Action, Longman, London, 1987, pp. 159–161.

    Google Scholar 

  33. P. Kovacic, P. F. Kiser and B. A. Feinberg. Unpublished work.

  34. D. Woodcock. In R. W. Marsh (ed.), Systemic Fungicides, Wiley, New York, 1972, pp. 34–79.

    Google Scholar 

  35. M. T. Williams and L. Simonet. Toxicol. Appl. Pharmacol. 96:541–549 (1988).

    Google Scholar 

  36. B. L. Currie. 197th ACS National Meeting, Abstracts, MEDI-112 (1989).

  37. R. Grote, Y. Chen, A. Zeeck, Z. Chen, H. Zähner, P. Mischnick-Lübbecke, and W. A. König. J. Antibiot. 41:595–601 (1988).

    Google Scholar 

  38. R. E. Hackler, B. A. Dreikorn, G. W. Johnson, and D. L. Varie. J. Org. Chem. 53:5704–5709 (1988).

    Google Scholar 

  39. J. P. Skovill, D. L. Klayman, C. Lambros, G. E. Childs, and J. D. Notsch. J. Med. Chem. 27:87–91 (1984).

    Google Scholar 

  40. M. D. Morris and G. L. Kok. In A. J. Bard and H. Lund (eds.), Encyclopedia of Electrochemistry of the Elements, Vol. 13, Marcel Dekker, New York, 1979, pp. 2–70.

    Google Scholar 

  41. D. C. Borg and K. M. Schaich. Isr. J. Chem. 24:38–53 (1984).

    Google Scholar 

  42. A. L. Lehninger. Biochemistry, Worth, New York, 1977, p. 481.

    Google Scholar 

  43. W. R. Wilson, R.F. Anderson, and W. A. Denny. J. Med. Chem. 32:23–30 (1989).

    Google Scholar 

  44. R. D. Geer and H. J. Byker. J. Org. Chem. 47:1662–1668 (1982).

    Google Scholar 

  45. S. Matsugo, N. Kayamori, Y. Hatano, T. Ohta, and T. Konishi, FEBS Lett. 184:25–29 (1985).

    Google Scholar 

  46. W. Edlich and H. Lyr. In H. Lyr (ed.), Modern Selective Fungicides—Properties, Applications, and Mechanisms of Action, Longman, London, 1987, pp. 107–118.

    Google Scholar 

  47. H. P. Burchfield and E. E. Storrs. In D. C. Torgeson (ed.), Fungicides, Vol. 2, Academic Press, New York, 1969, pp. 61–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacic, P., Kiser, P.F. & Feinberg, B.A. Are Reduction Potentials of Antifungal Agents Relevant to Activity?. Pharm Res 7, 283–288 (1990). https://doi.org/10.1023/A:1015834431140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015834431140

Navigation