Skip to main content
Log in

Investigation of the Degradation Mechanism of 5-Aminosalicylic Acid in Aqueous Solution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The solution degradation of the antiinflammatory agent 5-aminosal-icylic acid (5-ASA) was investigated in order to elucidate a mechanism for degradation. Two degradation pathways were considered: decarboxylation by analogy to 4-aminosalicyclic acid (4-ASA) decomposition and oxidation from consideration of 5-ASA's aromatic ring substitution pattern (i.e., relation to p-aminophenol). The oxidation of 5-ASA was investigated using cyclic voltammetry and flow electrolysis. These studies showed that 5-ASA is more easily oxidized than is 4-ASA and that 5-ASA undergoes a two-electron, two-proton oxidation consistent with formation of 5-ASA-quinoneimine (5-ASA-QI). This oxidation is followed by subsequent complex chemistry. The decomposition of 5-ASA in solution was examined under a variety of conditions. 5-ASA decomposes most rapidly under conditions promoting oxidation and is most stable under conditions tending to inhibit oxidation. Decarboxylation was not found to be a significant degradation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Klotz. Pharmacokinetic properties of 5-aminosalicylic acid (mesalazine). Falk Symp. 46:339–347 (1988).

    Google Scholar 

  2. S. Bondesen, S. N. Rasmussen, J. Rask-Madsen, O. H. Nielsen, K. Lauritsen, V. Binder, S. H. Hansen, and E. F. Hvidberg. 5-Aminosalicylic acid in the treatment of inflammatory bowel disease. Acta Med. Scand. 221:227–242 (1987).

    Google Scholar 

  3. E. Brendel, I. Meineke, E. Stüwe, and H. Osterwald. Stability of 5-aminosalicylic acid and 5-acetylaminosalicylic acid in plasma. J. Chromatogr. Biomed. Appl. 432:358–362 (1988).

    Google Scholar 

  4. C. Fischer, K. Maier, and U. Klotz. Simplified high-performance liquid chromatographic method for 5-aminosalicylic acid in plasma and urine. J. Chromatogr. 225:498–503 (1981).

    Google Scholar 

  5. H. A. Montgomery, F. M. Smith, B. E. Scott, S. J. White, and K. B. Gerald. Stability of 5-aminosalicylic acid in plasma. Am. J. Hosp. Pharm. 43:118–120 (1986).

    Google Scholar 

  6. I. Cendrowska, M. Drewnowska, A. Grzeszkiewicz, and K. Butkiewicz. Investigation of the stability of 5-aminosalicylic acid in tablets and suppositories by high-performance liquid chromatography. J. Chromatogr. 509:195–199 (1990).

    Google Scholar 

  7. R. F. Rekker and W. T. Nauta. The U.V. absorption spectra of p-amino-salicylic acid and some related compounds. III. The decomposition of p-amino-salicylic acid in aqueous solutions. Pharm. Weekbl. 91:693–704 (1956).

    Google Scholar 

  8. S. G. Jivani and V. J. Stella. Mechanism of decarboxylation of p-aminosalicylic acid. J. Pharm. Sci. 74:1274–1282 (1985).

    Google Scholar 

  9. G. E. Dunn, E. G. Janzen, and W. Rodewald. Mechanism of decarboxylation of substituted salicylic acids. I. Kinetics in quinoline solution. Can. J. Chem. 46:2905–2909 (1968).

    Google Scholar 

  10. W. K. Snead and A. E. Remick. Studies on oxidation-reduction mechanism. II. The anodic oxidation of p-aminophenol. J. Am. Chem. Soc. 79:6121–6127 (1957).

    Google Scholar 

  11. T. Nomura. Indirect polarographic determination of microgram amounts of iron by means of the catalytic oxidation of 5-aminosalicylic acid. J. Electroanal. Chem. 124:213–219 (1981).

    Google Scholar 

  12. B. J. Dull, K. Salata, A. v. Langenhove, and P. Goldman. 5-Aminosalicylate: Oxidation by activated leukocytes and protection of cultured cells from oxidative damage. Biochem. Pharmacol. 36:2467–2472 (1987).

    Google Scholar 

  13. O. I. Aruoma, M. Wasil, B. Halliwell, B. M. Hoey, and J. Butler. The scavenging of oxidants by sulphasalazine and its metabolites. Biochem. Pharmacol. 36:3739–3742 (1987).

    Google Scholar 

  14. I. Ahnfelt-Rønne and O. H. Nielsen. The antiinflammatory moiety of sulfasalazine, 5-aminosalicylic acid, is a radical scavenger. Agents Actions 21:191–194 (1987).

    Google Scholar 

  15. H. Strøm and I. Ahnfelt-Rønne. Second-line anti-rheumatic drugs and free radical scavenging. Agents Actions 26:235–237 (1989).

    Google Scholar 

  16. J. R. A. Pollock and R. Stevens (eds.). Dictionary of Organic Compounds, 4th ed., Eyre and Spottiswoode, London, 1965, Vol. 1, p. 141.

    Google Scholar 

  17. D. J. Miner and P. T. Kissinger. Evidence for the involvement of N-acetyl-p-quinoneimine in acetaminophen metabolism. Biochem. Pharmacol. 28:3285–3290 (1979).

    Google Scholar 

  18. P. T. Kissinger and W. R. Heineman. Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York, 1984.

    Google Scholar 

  19. R. A. Friedel and M. Orchin. Ultraviolet Spectra of Aromatic Compounds, John Wiley and Sons, New York, 1951.

    Google Scholar 

  20. H. v. Euler, H. Hasselquist, and Uno Lööv. Oxydation des 5-aminosalicylsäure-äthylesters. Arkiv Kemi Mineral. Geol. 25A:No. 14 (1948).

  21. P. V. Khadikar and P. S. Deshmukh. Protonation constants of salicylic substituted salicylic acids. J. Ind. Chem. Soc. 54:101 (1977).

    Google Scholar 

  22. H. Allgayer, J. Sonnenbichler, W. Kruis, and G. Paumgartner. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coefficients of sulphasalazine and its metabolites. Drug Res. 35(II):1457–1459 (1985).

    Google Scholar 

  23. M. De Vos, H. Verdievel, R. Schoonjans, R. Beke, G. A. De Weerdt, and F. Barbier. High-performance liquid chromatographic assay for the determination of 5-aminosalicylic acid and acetyl-5-aminosalicyclic acid concentrations in endoscopic intestinal biopsy in humans. J. Chromatogr. Biomed. Appl. 564:296–302 (1991).

    Google Scholar 

  24. E. J. D. Lee and S. B. Ang. Simple and sensitive high performance liquid chromatographic assay for 5-aminosalicylic acid and acetyl-5-aminosalicylic acid in serum. J. Chromatogr. Biomed. Appl. 413:300–304 (1987).

    Google Scholar 

  25. E. Brendel, I. Meineke, D. Witsch, and M. Zschunke. Simultaneous determination of 5-aminosalicylic acid and 5-acetylaminosalicylic acid by high-performance liquid chromatography. J. Chromatogr. 385:299–304 (1987).

    Google Scholar 

  26. S. H. Hansen. Assay of 5-aminosalicylate and its acetylated metabolite in biological fluids by high-performance liquid chromatography on dynamically modified silica. J. Chromatogr. Biomed. Appl. 226:504–509 (1981).

    Google Scholar 

  27. E. Nagy, I. Csipo, I. Degrell, and G. Szabo. High-performance liquid chromatographic assay of 5-aminosalicylic acid and its acetylated metabolite using electrochemical detection. J. Chromatogr. Biomed. Appl. 425:214–219 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palsmeier, R.K., Radzik, D.M. & Lunte, C.E. Investigation of the Degradation Mechanism of 5-Aminosalicylic Acid in Aqueous Solution. Pharm Res 9, 933–938 (1992). https://doi.org/10.1023/A:1015813302412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015813302412

Navigation