Skip to main content
Log in

Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new synthesis/processing method has been devised to produce magnesium/carbonate co-substituted hydroxyapatite ceramics that do not decompose to tricalcium phosphate (TCP) on sintering. Using this method, a series of magnesium/carbonate co-substituted hydroxyapatite (Mg/CO3–HA) compositions, containing between 0 and 0.35 wt % Mg and approximately 0.9 wt % CO3 were prepared. Sintering the Mg/CO3–HA compositions in a CO2/H2O atmosphere yields a single crystalline phase that appears to be identical to stoichiometric HA. In contrast, when the compositions were prepared in the absence of carbonate and were sintered in air, the phase composition was a biphasic mixture of HA and TCP e.g. for 0.25 wt % Mg substitution the phase composition was approximately 60%HA/40% TCP. Clearly, both the synthesis route and the processing (i.e. sintering) route are of importance in the production of a single-phase Mg/CO3–HA ceramic. Fourier transform infrared (FTIR) spectroscopy has indicated that the Mg/CO3–HA ceramics still contained carbonate groups after sintering at 1200 °C. Chemical analysis by X-ray fluorescence spectroscopy (XRF) and C–H–N analysis has shown that the cation/anion molar ratio (i.e. [Ca+Mg]/[P+C/2]) of the different compositions were 1.68(±0.01), which is equivalent to the Ca/P molar ratio of stoichiometric HA. Although the magnesium/carbonate co-substitution had a positive effect in preventing phase decomposition during sintering, it appeared to have a negative effect on the densification of the MgCO3–HA ceramics, compared to stoichiometric HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Liu, J. Schoenaers, K. De Groot, J. R. De Wijn and E. Schepers, J. Mater. Sci. Mater. in Med. 11 (2000) 711.

    Google Scholar 

  2. T. Kobayashi, S. Shingaki, T. Nakajima and K. Hanada, J. Long-Term Effects of Med. Impl. 3 (1993) 283.

    Google Scholar 

  3. A. Moroni, V. L. Caja, E. L. Egger, L. Trinchese and E. Y. S. Chao, Biomaterials 15 (1994) 926.

    Google Scholar 

  4. C. P. A. T. Klein, A. A. Driessen, K. De Groot and A. Van Den Hooff, J. Biomed. Mater. Res. 17 (1983) 769.

    Google Scholar 

  5. A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez and L. Moro, J. Inorg. Biochem. 68 (1997) 45-51.

    Google Scholar 

  6. F. C. M. Driessens, Bull Soc. Chem. Belg. 89 (1980) 663.

    Google Scholar 

  7. M. Kakei, H. Nakahara, N. Tamura, H. Itoh and M. Kumegawa, Ann. Anat. 179 (1997) 311.

    Google Scholar 

  8. A. Bigi, E. Foresti, R. Gregorinin, A. Ripamonti, N. Roveri and J. S. Shah, Calcif. Tissue Int. 50 (1992) 439.

    Google Scholar 

  9. R. Z. Legeros, R. Kijkowska, C. Bautista and J. P. Legeros, Conn. Tissue. Res. 33 (1995) 203.

    Google Scholar 

  10. J. D. B. Featherstone, I. Mayer, F. C. M. Driessens, R. M. H. Verbeeck and H. J. M. Heijligers, Calcif. Tissue Int. 35 (1983) 169.

    Google Scholar 

  11. R. N. Correia, M. C. F. MagalhÃes, P. A. A. P. Marques and A. M. R. Senos, J. Mat. Sci. Mater. in Med. 7 (1996) 501.

    Google Scholar 

  12. K. TÔnsuaadu, M. Peld, T. LeskelÄ, R. Mannonen, L. NiinistÖ and M. Veiderma, Thermochimica Acta 256 (1995) 55.

    Google Scholar 

  13. A. Yasukawa, S. Ouchi, K. Kandori and T. Ishikawa, J. Mater. Chem. 6 (1996) 1401.

    Google Scholar 

  14. I. Mayer, R. Schlam and J. D. B. Featherstone, J. Inorg. Biochem. 66 (1997) 1.

    Google Scholar 

  15. A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti and N. Roveri, ibid. 49 (1993) 69.

    Google Scholar 

  16. K. Ishikawa, P. Ducheyne and S. Radin, J. Mater. Sci. Mater. in Med. 4 (1993) 165.

    Google Scholar 

  17. I. R. Gibson, I. U. Rehman, S. M. Best and W. Bonfield, ibid. 11 (2000) 533.

    Google Scholar 

  18. B. Dickens, L. W. Schroeder and W. E. Brown, J. Solid State Chem. 10 (1974) 232.

    Google Scholar 

  19. D. Clement, J. M. Tristan, M. Hamad, P. Roux and J. G. Heughebaert, ibid. 78 (1989) 271.

    Google Scholar 

  20. J. Ando, Bull. Chem. Soc. Japan 31 (1958) 201.

    Google Scholar 

  21. R. Z. Legeros, Prog. Crystal Growth Charact. 4 (1981) 1.

    Google Scholar 

  22. D. G. A. Nelson and J. D. B. Featherstone, Calc. Tiss. Int. 34 (1982) S69.

    Google Scholar 

  23. R. Z. Legeros, O. R. Trautz, J. P. Legeros and E. Klein, Bull. Soc. Chim. France (1968) 1712.

  24. M. Vignoles, G. Bonel and R. A. Young, Calcif. Tissue Int. 40 (1987) 64.

    Google Scholar 

  25. M. Vignoles, G. Bonel, D. W. Holcomb and R. A. Young, ibid. 43 (1988) 33.

    Google Scholar 

  26. M. Okazaki, Biomaterials 12 (1991) 831.

    Google Scholar 

  27. M. Akao, H. Aoki and K. Kato, J. Mat. Sci. 16 (1981) 809.

    Google Scholar 

  28. I. R. Gibson and W. Bonfield, “Process for the Preparation of Magnesium and Carbonate Substituted Hydroxyapatite”, International Patent Application No. PCT/GB98/03817.

  29. Idem., J. Biomed Mater. Res. 59 (2002) 697.

    Google Scholar 

  30. I. R. Gibson, S. Ke, S. M. Best and W. Bonfield, J. Mat. Sci. Mater. In Med. 12 (2001) 163.

    Google Scholar 

  31. PDF Card no. 9-432, ICDD, Newton Square, Pennsylvania, U.S.A.

  32. A. C. Larson, R. B. Von Dreele and M. Lujan Jr., GSAS — Generalised Crystal Structure Analysis System, Neutron Scattering Centre, Los Alamos National Laboratory, California (1990).

    Google Scholar 

  33. I. Kay, R. A. Young and A. S. Posner, Nature 204 (1964) 1050.

    Google Scholar 

  34. I. Rehman and W. Bonfield, J. Mat. Sci. Mater. Med. 8 (1997) 1.

    Google Scholar 

  35. A. A. Campbell, M. Loroe and G. H. Nancollas, Colloids and Surfaces 54 (1991) 25.

    Google Scholar 

  36. A. SlÓsarczyk, E. Stobierska, Z. Paszkiewicz and M. Gawlicki, J. Am. Ceram. Soc. 79 (1996) 2539.

    Google Scholar 

  37. R. Z. Legeros, Nature 205 (1965) 403.

    Google Scholar 

  38. J. Barralet, PhD Thesis, University of London, UK (1995).

  39. R. Z. Legeros, O. R. Trautz, E. Klein and J. P. Legeros, Experimentia 25 (1969) 5.

    Google Scholar 

  40. H. El Feki, C. Rey and M. Vignoles, Calc. Tiss. Int. 49 (1991) 269.

    Google Scholar 

  41. Y. Suwa, H. Banno, H. Saito, Y. Doi, T. Koda, M. Adachi and Y. Moriwaki, in “Bioceramics”, Vol. 6, edited by P. Ducheyne and D. Christiansen (Butterworth-Heinemann Ltd., Oxford, 1993) 381-386.

    Google Scholar 

  42. I. R. Gibson, S. M. Best and W. Bonfield (submitted J. Am. Ceram. Soc. 2001).

  43. N. Senamaud, D. Bernache-Assollant, E. Champion, M. Heughebaert and C. Rey, Solid State Ionics 101–103 (1997) 1357.

    Google Scholar 

  44. Y. Doi, T. Koda, M. Adachi, N. Wakamatsu, T. Goto, H. Kamemizu, Y. Moriwaki and Y. Suwa, J. Biomed. Mater. Res. 29 (1995) 1451.

    Google Scholar 

  45. J. C. Merry, I. R. Gibson, S. M. Best and W. Bonfield, J. Mat. Sci. Mater. Med. 9 (1998) 779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, I.R., Bonfield, W. Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. Journal of Materials Science: Materials in Medicine 13, 685–693 (2002). https://doi.org/10.1023/A:1015793927364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015793927364

Keywords

Navigation