Skip to main content
Log in

Expression of alpha-synuclein in non-apoptotic, slowly degenerating facial motoneurones

  • Published:
Journal of Neurocytology

Abstract

The discovery that missense mutations in the alpha-synuclein gene represent a rare genetic cause of Parkinson's disease (PD) has had significant impact on the development of research into neurodegenerative disorders. It is becoming increasingly clear that alpha-synuclein plays a central role in the pathological process, which causes Lewy body formation and neurodegeneration in PD. Importantly, there is evidence to suggest that mutated alpha-synuclein is toxic to both nerve cells and glia. However, the regulation and function of wild-type alpha-synuclein are as yet ill defined. Using the facial nerve axotomy model, we have addressed the question whether the expression of alpha-synuclein in nerve cells may change in response to injury. We were particularly interested in testing the hypothesis that the severity of neuronal injury had an effect on alpha-synuclein metabolism. Facial nerve cut and crush, respectively, were performed in adult rats where normal facial motoneurones do not express alpha-synuclein. Following axotomy, a subset of facial motoneurones newly expressed high levels of alpha-synuclein immunoreactivity in their cell body and, occasionally, their nucleus. Significantly more nerve cells were labelled following facial nerve transection than following facial nerve crush. Confocal microscopy revealed a granular pattern of alpha-synuclein aggregation in degenerating nerve cells. Interestingly, the observed cell death phenotype was clearly non-apoptotic and developed over days or weeks rather than hours. Thus, axotomy of adult rat facial motoneurones triggers de novo expression of alpha-synuclein and this expression is associated with a non-apoptotic, slow form a neurodegeneration. In addition, the extent of alpha-synuclein expression is related to the severity of neuronal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich, A., Schmitz, Y., Farinas, I., Choilundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D. & Rosenthal, A. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    PubMed  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q. & Iwatsubo, T. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. American Journal of Pathology 152, 879–884.

    PubMed  Google Scholar 

  • Blinzinger, K. & Kreutzberg, G. W. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Zeitschrift für Zellforschung 85, 145–157.

    Google Scholar 

  • Conway, K. A., Harper, J. D. & Lansbury, P. T. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Medicine 4, 1318–1320.

    PubMed  Google Scholar 

  • Conway, K. A., Harper, J. D. & Lansbury, P. T., Jr. (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563.

    PubMed  Google Scholar 

  • Dai, C. F., Kanoh, N., Li, K. Y. & Wang Z. (2000) Study on facial motoneuronal death after proximal or distal facial nerve transection. American Journal of Otology 21, 115–118.

    PubMed  Google Scholar 

  • Dal Canto, M. C. & Gurney, M. E. (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. American Journal of Pathology 145, 1271–1279.

    PubMed  Google Scholar 

  • Davies, S. W., Turmaine, M., Cozens, B. A., Raza, A. S., Mahal, A., Mangiarini, L. & Bates, G. P. (1999) From neuronal inclusions to neurodegeneration: Neuropathological investigation of a transgenic mouse model of Huntington's disease. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 354, 981–989.

    Google Scholar 

  • El-Agnaf, O. M., Jakes, R., Curran, M. D., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D. & Wallace, A. (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. Federation of European Biochemical Societies Letters 440, 71–75.

    PubMed  Google Scholar 

  • Fawcett, J. W. & Keynes, R. J. (1990) Peripheral nerve regeneration. Annual Review of Neuroscience 13, 43–60.

    PubMed  Google Scholar 

  • George, J. M., Jin, H., Woods, W. S. & Clayton, D. F. (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.

    Google Scholar 

  • Giasson, B. I., Uryu, K., Trojanowski, J. Q. & Lee, V. M. (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. Journal of Biological Chemistry 274, 7619–7622.

    PubMed  Google Scholar 

  • Goedert, M. (1999) Filamentous nerve cell inclusions in neurodegenerative diseases: Tauopathies and alpha-synucleinopathies. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 354, 1101–1118.

    Google Scholar 

  • Graeber, M. B., Grasbon-Frodl, E., Abell-Aleff, P. & KÓsel, S. (1999) Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson's disease. Parkinsonism & Related Disorders 5, 187–192.

    Google Scholar 

  • Graeber, M. B. & Kreutzberg, G. W. (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons. Journal of Neurocytology 15, 363–373.

    Google Scholar 

  • Hashimoto, M., Hsu, L. J., Sisk, A., Xia, Y., Takeda, A., Sundsmo, M. & Masliah, E. (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: Relevance for Lewy body disease. Brain Research 799, 301–306.

    Google Scholar 

  • Hsu, L. J., Mallory, M., Xia, Y., Veinbergs, I., Hashimoto, M., Yoshimoto, M., Thal, L. J., Saitoh, T. & Masliah, E. (1998) Expression pattern of synucleins (non-Abeta component of Alzheimer's disease amyloid precursor protein/alpha-synuclein) during murine brain development. Journal of Neurochemistry 71, 338–344.

    Google Scholar 

  • Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., Kittel, A. & Saitoh, T. (1995) The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Google Scholar 

  • Jensen, P. H. & Gai, W. P. (2001) Alpha-synuclein. Axonal transport, ligand interaction and neurodegeneration. Advances in Experimental Medicine and Biology 487, 129–134.

    Google Scholar 

  • Jensen, P. H., Li, J. Y., Dahlstrom, A. & Dotti, C. G. (1999) Axonal transport of synucleins is mediated by all rate components. European Journal of Neuroscience 11, 3369–3376.

    Google Scholar 

  • Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G. & Goedert, M. (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. Journal of Biological Chemistry 273, 26292–26294.

    Google Scholar 

  • Kashihara, Y., Kuno, M. & Miyata, Y. (1987) Cell death of axotomized motoneurones in neonatal rats, and its prevention by peripheral reinnervation. Journal of Physiology 386, 135–148.

    Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., KÓsel, S., Przuntek, H., Epplen, J. T., Schols, L. & Riess, O. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nature Genetics 18, 106–108.

    Google Scholar 

  • Li, L. X., Houenou, L. J., Wu, W. T., Lei, M., Prevette, D. M. & Oppenheim, R. W. (1998) Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice. Journal of Comparative Neurology 396, 158–168.

    Google Scholar 

  • Lieberman, A. R. (1971) The axon reaction: A review of the principal features of perikaryal responses to axon injury. International Review of Neurobiology 14, 49–124.

    Google Scholar 

  • Majno, G. & Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. American Journal of Pathology 146, 3–15.

    Google Scholar 

  • Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. & Mucke, L. (2000) Dopaminergic loss and inclusion body formation in alphasynuclein mice: Implications for neurodegenerative disorders. Science 287, 1265–1269.

    Google Scholar 

  • Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., Louis, J. C., Wypych, J., Biere, A. L. & Citron, M. (1999) Both familial Parkinson's disease mutations accelerate alphasynuclein aggregation. Journal of Biological Chemistry 274, 9843–9846.

    Google Scholar 

  • Ostrerova, N., Petrucelli, L., Farrer, M., Mehta, N., Choi, P., Hardy, J. & Wolozin, B. (1999) Alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. Journal of Neuroscience 19, 5782–5791.

    Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., di Iorio, G., Golbe, L. I. & Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047.

    Google Scholar 

  • Raina, A. K., Hochman, A., Zhu, X., Rottkamp, C. A., Nunomura, A., Siedlak, S. L., Boux, H., Castellani, R. J., Perry, G. & Smith, M. A. (2001) Abortive apoptosis in Alzheimer's disease. Acta Neuropathologica (Berlin) 101, 305–310.

    Google Scholar 

  • Roth, K. A. (2001) Caspases, apoptosis, and Alzheimer disease: Causation, correlation, and confusion. Journal of Neuropathology and Experimental Neurology 60, 829–838.

    Google Scholar 

  • Saha, A. R., Ninkina, N. N., Hanger, D. P., Anderton, B. H., Davies, A. M. & Buchman V. L. (2000) Induction of neuronal death by alpha-synuclein. European Journal of Neuroscience 12, 3073–3077.

    Google Scholar 

  • Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    PubMed  Google Scholar 

  • Schmalbruch, H. (1988) The effect of peripheral nerve injury on immature motor and sensory neurons and on muscle fibres. Possible relation to the histogenesis of Werdnig-Hoffmann disease. Review of Neurology (Paris) 144, 721–729.

    Google Scholar 

  • Schmitt, A. B., Breuer, S., Voell, M., Schwaiger, F. W., Spitzer, C., Pech, K., Brook, G. A., Noth, J., Kreutzberg, G. W. & Nacimiento, W. (1999) GAP-43 (B-50) and C-Jun are up-regulated in axotomized neurons of Clarke's Nucleus after spinal cord injury in the adult rat. Neurobiology of Disease 6, 122–130.

    Google Scholar 

  • Schwaiger, F. W., Schmitt, G. H., Horvat, A., Hager, G., Streif, R., Spitzer, C., Gamal, S., Breuer, S., Brook, G. A., Nacimiento, W. & Kreutzberg, G. W. (2000) Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). European Journal of Neuroscience 12, 1165–1176.

    Google Scholar 

  • Serpell, L. C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R. A. (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloidlike cross-beta conformation. Proceedings of the National Academy of Sciences of the USA 97, 4897–4902.

    Google Scholar 

  • Sperandio, S., de Belle, I. & Bredesen, D. E. (2000) An alternative, nonapoptotic form of programmed cell death. Proceedings of the National Academy of Sciences of the USA 97, 14376–14381.

    Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the USA 95, 6469–6473.

    Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R. & Goedert, M. (1997) Alpha-synuclein in Lewy bodies. Nature 388, 839–840.

    Google Scholar 

  • Sumner, B. E. H. (1976) Quantitative ultrastructural observations on the inhibited recovery of the hypoglossal nucleus from the axotomy response when regeneration of the hypoglossal nerve is prevented. Experimental Brain Research 26, 141–150.

    Google Scholar 

  • Tetzlaff, W., Graeber, M. B. & Kreutzberg, G. W. (1986) Reaction of motoneurons and their microenvironment to axotomy. Experimental Brain Research Suppl. 13, 3–8.

    Google Scholar 

  • Tu, P. H., Galvin, J. E., Baba, M., Giasson, B., Tomita, T., Leight, S., Nakajo, S., Iwatsubo, T., Trojanowski, J. Q. & Lee, V. M. (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Annals of Neurology 44, 415–422.

    Google Scholar 

  • Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G. P. & Davies, S. W. (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the USA 97, 8093–8097.

    Google Scholar 

  • Turnbull, S., Tabner, B. J., El-Agnaf, O. M., Moore, S., Davies, Y. & Allsop, D. (2001) Alpha-Synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine 30, 1163–1170.

    Google Scholar 

  • Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A., Kondo, J., Ihara, Y. & Saitoh, T. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences of the USA 90, 11282–11286.

    Google Scholar 

  • van der Putten, H., Wiederhold, K. H., Probst, A., Barbieri, S., Mistl, C., Danner, S., Kauffmann, S., Hofele, K., Spooren, W. P., Ruegg, M. A., Lin, S., Caroni, P., Sommer, B., Tolnay, M. & Bilbe, G. (2000) Neuropathology in mice expressing human alpha-synuclein. Journal of Neuroscience 20, 6021–6029.

    Google Scholar 

  • Watson, W. E. (1974) Cellular responses to axotomy and related procedures. British Medical Bulletin 30, 112–115.

    Google Scholar 

  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T., Jr. (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709–13715.

    Google Scholar 

  • Zhou, W., Hurlbert, M. S., Schaack, J., Prasad, K. N. & Freed, C. R. (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Research 866, 33–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Graeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, L.B., Kösel, S., Spitzer, C. et al. Expression of alpha-synuclein in non-apoptotic, slowly degenerating facial motoneurones. J Neurocytol 30, 515–521 (2001). https://doi.org/10.1023/A:1015697318437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015697318437

Keywords

Navigation