Skip to main content
Log in

Enhanced Emission Induced by FRET from a Long-Lifetime, Low Quantum Yield Donor to a Long-Wavelength, High Quantum Yield Acceptor

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report observation of high quantum yield, long-lifetime fluorescence from a red dye BO-PRO-3 excited by resonance energy transfer (RET). The acceptor fluorescence was highly enhanced upon binding to the donor-labeled DNA. A ruthenium complex (Ru) was chosen as a donor in this system because of its long fluorescence lifetime. Both donor and acceptor were non-covalently bound to DNA. Emission from the donor-acceptor system (DA) at wavelengths exceeding 600 nm still preserves the long-lifetime component of the Ru donor, retaining average fluorescence lifetimes in the range of 30–50 ns. Despite the low quantum yield of the Ru donor in the absence of acceptor, its overall quantum yield of the DA pair was increased by energy transfer to the higher quantum yield acceptor BO-PRO-3. The wavelength-integrated intensity of donor and acceptor bound to DNA was many-fold greater than the intensity of the donor and acceptor separately bound to DNA. The origin of this effect is due to an efficient energy transfer from the donor, competing with non-radiative depopulation of the donor excited state. The distinctive features of DA complexes can be used in the development of a new class of engineered luminophores that display both long lifetime and long-wavelength emission. Similar DA complexes can be applied as proximity indicators, exhibiting strong fluorescence of adjacently located donors and acceptors over the relatively weak fluorescence of separated donors and acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. B. Thompson (1994) In J. R. Lakowicz (Ed.) Topics in Fluorescence Spectroscopy, Vol. 4: Probe Design and Chemical Sensing, Plenum Press, New York, pp. 151–222.

    Google Scholar 

  2. S. Daehne, U. Resch-Genger, O. S. and Wolfbeis (1998) Near-Infrared Dyes for High Technology Applications, Kluwer Academic Publishers, Boston, pp. 458.

    Google Scholar 

  3. S. J. Strickler and R. A. Berg (1962) J. Chem. Phys. 37, 814–822.

    Google Scholar 

  4. J. R. Lakowicz, G. Piszczek, and J. S. Kang (2001) Anal. Biochem. 288, 62–75.

    Google Scholar 

  5. B. P. Maliwal, Z. Gryczynski, and J. R. Lakowicz (2001) Anal. Chem. 73, 4277–4285.

    Google Scholar 

  6. K. Kalayanasundarm (1992) Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, New York.

    Google Scholar 

  7. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. Von Zelewsky (1988) Coord. Chem. Rev. 84, 85–277.

    Google Scholar 

  8. J. N. Demas and B. A. DeGraff (1991) Anal. Chem. 63, 829A–837A.

    Google Scholar 

  9. J. N. Demas and B. A. DeGraff (1994) in J. R. Lakowicz (Ed.) Topics in Fluorescence Spectroscopy, Vol. 4: Probe Design and Chemical Sensing, Plenum Press, New York, pp. 71–107.

    Google Scholar 

  10. E. Terpetschnig, H. Szmacinski, H. Malak, and J. R. Lakowicz (1995) Biophys. J. 68, 342–350.

    Google Scholar 

  11. H. Szmacinski, E. Terpetschnig, and J. R. Lakowicz (1996) Biophys. Chem. 62, 109–120.

    Google Scholar 

  12. R. Grigg and W. D. J. A. Norbert (1992) J. Chem. Soc. Chem. Commun. 1992, 1300–1302.

    Google Scholar 

  13. M. E. Lippitsch and O. S. Wolfbeis (1988) Anal. Chim. 205, 1–6.

    Google Scholar 

  14. G. R. Haugen, B. W. Wallin, and F. E. Lytle (1979) Rev. Sci. Instrum. 50, 64–72.

    Google Scholar 

  15. B. G. Barisas and M. D. Lauther (1980) Rev. Sci. Instrum. 51, 74–78.

    Google Scholar 

  16. D. R. James, A. Siemiarczuk, and W. R. Ware (1992) Rev. Sci. Instrum. 63, 1710–1716.

    Google Scholar 

  17. H. C. Cheung (1991) in J. R. Lakowicz (Ed.) Topics in Fluorescence Spectroscopy, Vol. 2 Principles, Plenum Press, New York, pp. 127–176.

    Google Scholar 

  18. R. M. Clegg (1992) Proc. Natl. Acad. Sci. 211, 353–388.

    Google Scholar 

  19. P. R. Selvin (1996) IEEE J. Selected Topics in Quantum Electronics 2(4), 1077–1087.

    Google Scholar 

  20. J. Ju, C. Ruan, C. W. Fuller, A. N. Glazer, and R. A. Mathies (1995) Proc. Natl. Acad. Sci. USA 92, 4347–4351.

    Google Scholar 

  21. S. L. Klakamp and W. DeW. Horrocks (1992) J. Inorg. Biochem. 46, 175–192.

    Google Scholar 

  22. S. L. Klakamp and W. DeW. Horrocks (1992) J. Inorg. Biochem. 46, 193–205.

    Google Scholar 

  23. P. K. L. Fu and C. Turro (1999) J. Am. Chem. Soc. 121(1), 1–7.

    Google Scholar 

  24. L. Stryer (1978) Annu. Rev. Biochem. 47, 819–846.

    Google Scholar 

  25. R. M. Clegg (1996) in X. F. Wang and B. Herman (Eds.) Fluorescence Imaging Spectroscopy and Microscopy, John Wiley & Sons, New York, pp. 179–252.

    Google Scholar 

  26. J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, chapters 13- 15, pp. 367–443.

    Google Scholar 

  27. J. R. Laws and L. Brand (1979) J. Physiol. Chem. 83, 795–802.

    Google Scholar 

  28. A. Gafni and L. Brand (1978) Chem. Phys. Letts. 58, 346–350.

    Google Scholar 

  29. J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York, pp. 496.

    Google Scholar 

  30. H. Malak, I. Gryczynski, J. R. Lakowicz, G. J. Meyers, and F. N. Castellano (1997) J. Fluorescence 7(2), 107–112.

    Google Scholar 

  31. J. R. Lakowicz, H. Malak, I. Gryczynski, F. N. Castellano, and G. J. Meyer (1995) Biospectroscopy 1, 163–168.

    Google Scholar 

  32. J. R. Lakowicz and B. P. Maliwal (1985) Biophys. Chem. 21, 61–78.

    Google Scholar 

  33. B. A. Feddersen, D. W. Piston, and E. Gratton (1989) Rev. Sci. Instrum. 60(9), 2929–2936.

    Google Scholar 

  34. K. M. Parkhurst and L. J. Parkhurst (1996) J. Biomed. Opt. 1, 435–441.

    Google Scholar 

  35. N. Ota, K. Hirano, M. Warashina, A. Andrus, B. Mullah, K. Hatanaka, and K. Taira (1998) Nucleic Acids Res. 26(3), 735–743.

    Google Scholar 

  36. L. Kostrikis, S. Tyagi, M. M. Mhlanga, D. D. Ho, and F. R. Kramer (1998) Science 279, 1228–1229.

    Google Scholar 

  37. S. Tyagi, D. P. Bratu, and F. R. Kramer (1998) Nature Biotechnol. 16, 49–52.

    Google Scholar 

  38. P. O. Brown and D. Botstein (1999) Nature Genet. Suppl. 21, 33–37.

    Google Scholar 

  39. V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs (1999) Nature Genet. Suppl. 21, 15–19.

    Google Scholar 

  40. J. G. Hacia, L. C. Brody, and F. S. Collins (1998) Molec. Psychiatry 3, 483–492.

    Google Scholar 

  41. C. A. Harrington, C. Rosenow, and J. Retief (2000) Curr. Opin. Microbiol. 3, 285–291.

    Google Scholar 

  42. A. J. Pope, U. M. Haupts, and K. J. Moore (1999) DDT 4(8), 350–362.

    Google Scholar 

  43. L. Mere, T. Bennett, P. Coassin, P. England, B. Hamman, T. Rink, S. Zimmerman, and P. Negulescu (1999) DDT 4(8), 363–367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J.S., Piszczek, G. & Lakowicz, J.R. Enhanced Emission Induced by FRET from a Long-Lifetime, Low Quantum Yield Donor to a Long-Wavelength, High Quantum Yield Acceptor. Journal of Fluorescence 12, 97–103 (2002). https://doi.org/10.1023/A:1015375622992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015375622992

Navigation