Skip to main content
Log in

Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A novel vapor-liquid-solid epitaxy (VLSE) process has been developed to synthesize high-density semiconductor nanowire arrays. The nanowires generally are single crystalline and have diameters of 10-200 nm and aspect ratios of 10-100. The areal density of the array can readily approach 1010 cm-2. Results based on Si and ZnO nanowire systems are reported here. Because of their single crystallinity and high surface area, these nanowire arrays could find unique applications in photocatalysis and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Nanostructured Materials and Nanotechnology, ed. H.S. Nalwa (Academic Press, 2000).

  2. J. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res. 32 (1999) 435.

    Google Scholar 

  3. Highly Conducting One-Dimensional Solids, eds. J.T. Devreese, R.P. Evrard and V.E. van Doren, (Plenum: New York, 1979).

    Google Scholar 

  4. E.W. Wang, P.E. Sheehan and C.M. Lieber, Science 277 (1997) 1971.

    Google Scholar 

  5. L.T. Canham, Appl. Phys. Lett. 57 (1990) 1046.

    Google Scholar 

  6. J.D. Holmes, K.P. Johnston, R.C. Doty and B.A. Korgel, Science 287 (2000) 1471.

    Google Scholar 

  7. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. 47 (1996) 16631.

    Google Scholar 

  8. Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40 (1982) 939.

    Google Scholar 

  9. Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. 22 (1986) 1887.

    Google Scholar 

  10. Y. Miyamoto, Y. Miyake, M. Asada and Y. Suematsu, IEEE J. Quantum Electronics, 25 (1989) 2001.

    Google Scholar 

  11. Y. Cui and C.M. Lieber, Science 291(2001) 851.

    Google Scholar 

  12. T. Rueckes, K. Kim, E. Joselerich, G.Y. Tseng, C. Cheung and C.M. Lieber, Science 289 (2000) 94.

    Google Scholar 

  13. M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S. Louie, A. Zettle and P.L. McEuen, Science 288 (2000) 494.

    Google Scholar 

  14. S. Noda, K. Tomoda and N. Yamamoto, A. Chutinan, Science 289 (2000) 604.

    Google Scholar 

  15. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001) 1897.

    Google Scholar 

  16. Handbook of Microlithography, Micromachining, and Microfabrication, ed. P. Rai-Choudhury (SPIE press, IEE, 1999).

  17. C.M. Lieber, J. Liu and P.E. Sheehan, Angew. Chem. Int. Ed. Engl. 35 (1996) 687.

    Google Scholar 

  18. R.D. Piner, J. Zhu, F. Xu, S. Hong and C.A. Mirkin, Science 283 (1999) 661.

    Google Scholar 

  19. Y. Wu and P. Yang, Chem. Mater. 12 (2000) 605.

    Google Scholar 

  20. M.H. Huang, Y. Wu, H. Feick, E. Webber and P. Yang, Adv. Mater. 13 (2000) 113.

    Google Scholar 

  21. A.M. Morales and C.M. Lieber, Science 279 (1998) 208.

    Google Scholar 

  22. C.R. Martin, Science 266 (1994) 1961.

    Google Scholar 

  23. W. Han, S. Fan, W. Li and Y. Hu, Science 277 (1997) 1287.

    Google Scholar 

  24. T.J. Trentler, K.M. Hickman, S.C. Geol, A.M. Viano, P.C. Gibbons and W.E. Buhro, Science 270 (1995) 1791.

    Google Scholar 

  25. Y. Li, Y. Ding and Z. Wang, Adv. Mater. 11 (1999) 847.

    Google Scholar 

  26. X. Duan and C.M. Lieber, Adv. Mater. 12 (2000) 298.

    Google Scholar 

  27. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4 (1964) 889.

    Google Scholar 

  28. R.S. Wagner, in: Whisker Technology, ed. A.P. Levitt, (Wiley, New York, 1970) p. 47.

    Google Scholar 

  29. Y. Wu and P. Yang, J. Am. Chem. Soc. 123 (2001) 3165.

    Google Scholar 

  30. M.S. Gudiksen and C.M. Lieber, J. Am. Chem. Soc. 122 (2000) 8801.

    Google Scholar 

  31. S.T. Hiruma, M. Shirai, K. Tominaga, K. Haraguchi, T. Katsuyama and T. Shimada, Appl. Phys. Lett. 66 (1995) 159.

    Google Scholar 

  32. P.E. de Jongh, E.A. Meulenkamp, D. Vanmaekelbergh and J.J. Kelly, J. Phys. Chem. 104 (2000) 7686.

    Google Scholar 

  33. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995) 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Yan, H. & Yang, P. Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics. Topics in Catalysis 19, 197–202 (2002). https://doi.org/10.1023/A:1015260008046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015260008046

Navigation