Skip to main content
Log in

Natural Sunlight Induced Photooxidation of Naphthalene in Aqueous Solution

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

There is surprisingly little data on the photooxidation of polycyclic aromatic hydrocarbons (PAHs) under environmentally relevant lighting conditions. The aqueous photooxidation reactions of naphthalene (the simplest and most water soluble PAH) were investigated using natural sunlight as a light source.Six of the major reaction products were identified, including 1-naphthol, coumarin, and two hydroxyquinones. The reactionproducts were consistent with initial [2,2] or [2,4] photocycloaddition reactions, with subsequent oxidations and/or rearrangements. The oxidation reactions in aqueous phase favoredproducts different from those observed in atmospheric oxidation reactions. However, similar photoproducts were observed withtitanium catalysts or in the presence of hydrogen peroxide. Theproducts from aqueous photooxidation were also similar to the products resulting from naphthalene metabolism. The observedphotooxidation products were generated by mechanisms that areexpected to occur with other PAHs as well, and thus naphthaleneoxidation provides a model for possible photoreactions of largerPAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andino, J. M., Smith, J. N., Flagan, R. C., Goddard, W. A. III and Seinfeld, J. H.: 1996, ‘Mechanism of atmospheric photooxidation of aromatics: A theoretical study’, Journal of Physical Chemistry 100, 10967–10980.

    Google Scholar 

  • Bagchi, D., Bagchi, M., Balmoori, J., Vuchetich P. J. and Stohs, S. J.: 1998a, ‘Induction of oxidative stress and DNA damage by chronic administration of naphthalene to rats’, Res. Commun. Mol. Pathol. Pharmacol. 101, 249–257.

    PubMed  Google Scholar 

  • Bagchi, M., Bagchi, D., Balmoori, J., Ye, X. and Stohs, S. J.: 1998b, ‘Naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells’, Free Radic. Biol. Med. 25, 137–143.

    PubMed  Google Scholar 

  • Barbas, J. T., Sigman, M. E., Buchanan, A. C. III and Chevis E. A.: 1993, ‘Photolysis of substituted naphthalenes on silicon dioxide and aluminum trioxide’, Photochem. Photobiol. 58, 155–158.

    Google Scholar 

  • Black, S. D. and Coon, M. J.: 1987, ‘P-450 cytochromes: structure and function’, in A. Meister (ed.), Advances in Enzymology, John Wiley and Sons, New York, pp. 35–87.

    Google Scholar 

  • Cook, R. H., Pierce, R. C., Eaton, P. B., Lao, R. C., Onuska, F. I., Payne, J. F. and Vavasour, E.: 1983, Polycyclic aromatic hydrocarbons in the aquatic environment: formation, sources, fate and effects on aquatic biota, National Research Council of Canada. Ottawa, ON Canada, 209 pp.

    Google Scholar 

  • Das, S., Muneer, M. and Gopidas, K. R.: 1994, ‘Photocatalytic degradation of wastewater pollutants. Titanium dioxide mediated oxidation of polynuclear aromatic hydrocarbons’, J. Photochem. Photobiol. A: Chemistry 77, 83–88.

    Google Scholar 

  • Doherty, M. D., Cohen, G. M. and Smith, M. T.: 1984, ‘Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol’, Biochem. Pharmacol. 33, 543–549.

    PubMed  Google Scholar 

  • Duxbury, C. L., Dixon, D. G. and Greenberg, B. M.: 1997, ‘Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba’, Environ. Toxicol. Chem. 16, 1739–1748.

    Google Scholar 

  • England, P. A., Harford-Cross, C. F. Stevenson, J.-A., Rouch, D. A. and Wong, L.-L.: 1998, ‘The oxidation of Naphthalene and pyrene by cytochrome P450cam’, FEBS Letters 424, 271–274.

    PubMed  Google Scholar 

  • Flowers-Geary, L., Bleczinki, W. Harvey, R. G. and Penning, T. M. 1996.: ‘Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon ortho-quinones produced by dihydrodiol dehydrogenase’, Chem. Biol. Interact. 99, 55–72.

    PubMed  Google Scholar 

  • Forstner, H. J. Flagan, L. R. C. and Seinfeld, J. H.: 1997, ‘Secondary organic aerosol from the photoxidation of aromatic hydrocarbons: Molecular composition’, Environmental Science and Technology 31, 1345–1358.

    Google Scholar 

  • Fort, D. J., Stover, E. L., Propst, T., Hull, M. A. and Bantle, J. A.: 1998, ‘Evaluation of the developmental toxicities of coumarin, 4-hydroxycoumarin, and 7-hydroxycoumarin using FETAX’, Drug. Chem. Toxicol. 21, 15–26.

    PubMed  Google Scholar 

  • Gilbert, A. and Baggott J.: 1991, Essentials of molecular photochemistry, CRC Press, Inc., Boca Raton, FL, U.S.A., 538 pp.

    Google Scholar 

  • Huang, X.-D., McConkey, B. J., Babu, T. S. and Greenberg, B. M.: 1997, ‘Mechanisms of photoinduced toxicity of photomodified anthracene to plants: inhibition of photosynthesis in the aquatic higher plant Lemna gibba (duckweed)’, Environ. Toxicol. Chem. 16, 1707–1715.

    Google Scholar 

  • Hausen, B. M. and Schmieder, M.: 1986, ‘The Sensitizing Capacity of Coumarins I’, Contact Dermatitis 15, 157–163.

    PubMed  Google Scholar 

  • Hoeke, H. and Zellerhoff, R.: 1998, ‘Metabolism and toxicity of diisopropylnaphthalene as compared to naphthalene and monoalkyl nalphthalenes: A minireview’, Toxicology 126, 1–7.

    PubMed  Google Scholar 

  • Katz, M., Chan, C., Tosine, H. and Sakuma, T. 1979.: ‘Relative rates of photochemical and biological oxidation (in vitro) of polynuclear aromatic hydrocarbons’, in P. W. Jones and P. Leber (eds), Polynuclear Aromatic Hydrocarbons, Ann Arbor Science Publishers, Inc., Ann Arbor, MI, U.S.A., pp. 171–189.

    Google Scholar 

  • Kawabata, T. T. and White, K. L. Jr.: 1990, Effects of naphthalene and naphthalene metabolites on the in vitro humoral immune response', J. Toxicol. Environ. Health 30, 53–67.

    PubMed  Google Scholar 

  • Klein, A. E. and Pilpel, N.: 1974, ‘Photooxidation of alkyl benzenes initiated by 1-naphthol’, J. Chem Soc. Faraday Trans. 70, 1250–1256.

    Google Scholar 

  • Malkin, J.: 1992, Photophysical and photochemical properties of aromatic compounds, CRC Press, Boca Raton, FL, U.S.A., 426 pp.

    Google Scholar 

  • Mallakin, A., Dixon, D.G. and Greenberg, B.M.: 2000, ‘Pathway of anthracene modification under simulated solar radiation’, Chemosphere 40, 1435–1441.

    PubMed  Google Scholar 

  • McConkey, B. J.: 1999, Photooxidation and environmental mixture toxicity of polycyclic aromatic hydrocarbons, Ph.D. Thesis, Department of Biology, University of Waterloo, Waterloo, ON, Canada, 154 pp.

    Google Scholar 

  • Neff, J. M., 1984.: ‘Polycyclic aromatic hydrocarbons in the aquatic environment’, in G. M. P. Rand and S. R. Petrocelli (eds), Fundamentals of Aquatic Toxicology, Hemisphere Publishing Co, Washington, D.C., pp. 416–454.

    Google Scholar 

  • Palisade Corporation: 1990, Wiley Registry of Mass Spectral Data, 5th Edition, Palisade Corporation, Newfield, NJ.

    Google Scholar 

  • Payne, J. R. and Phillips, C. R.: 1985, ‘Photochemistry of petroleum in water’ Environ. Sci. Technol. 19, 569–576.

    Google Scholar 

  • Ren, L., Huang, X.-D., McConkey, B. J., Dixon D. G. and Greenberg, B. M.: 1994, ‘Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G-3’, Ecotoxicol Environ. Saf. 28, 160–171.

    PubMed  Google Scholar 

  • Saito, I. and Matsuura, T.: 1979, ‘The oxidation of electron-rich aromatic compounds’, in H. H. Wasserman and R. W. Murray (eds), Singlet Oxygen, Academic Press, New York, pp. 511–574.

    Google Scholar 

  • Sasaki, J. C., Arey, J., Eastmond, D. A., Parks, K. K. and Grosovsky, A. J.: 1997, ‘Genotoxicity induced in human lymphoblasts by atmospheric reaction products of naphthalene and phenanthrene’, Mutat. Res. 393, 23–35.

    PubMed  Google Scholar 

  • Siegl, W. O., Hammerle, R. H., Herrmann, H. M., Wenclawiak, B. W. and Luers-Jongen, B.: 1999, ‘Organic emissions profile for a light-duty diesel vehicle’, Atmospheric Environment 33, 797–805.

    Google Scholar 

  • Silverstein, R. M., Bassler, G. C. and Morrill, T. C.: 1991, Spectrometric Identification of Organic Compounds, John Wiley and Sons, Inc., New York, 363 pp.

    Google Scholar 

  • Smith, M. T.: 1985, ‘Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview’, J. Toxicol. Environ. Health 16, 665–672.

    PubMed  Google Scholar 

  • Tingle, M. D., Pirmohamed, M., Templeton, E., Wilson, A. S., Madden, S., Kitteringham, N. R. and Park, B. K.: 1993, ‘An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes’, Biochem. Pharmacol. 46, 1529–1538.

    PubMed  Google Scholar 

  • Tuhkanen, T. A. and Beltran, F. J.: 1995, ‘Intermediates of the oxidation of naphthalene in water with the combination of hydrogen peroxide and UV radiation’, Chemosphere 30, 1463–1475.

    Google Scholar 

  • Wilson, A. S., Davis, C. D., Williams, D. P., Buckpitt, A. R., Pirmohamed M. and Park, B. K.: 1996, ‘Characterisation of the toxic metabolite(s) of naphthalene’, Toxicology 114, 233–242.

    PubMed  Google Scholar 

  • Zheng, J., Cho, M., Jones, A. D. and Hammock, B. D.: 1997, ‘Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine Clara cells after exposure to naphthalene’, Chem. Res. Toxicol. 10, 1008–1014.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Greenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConkey, B.J., Hewitt, L.M., Dixon, D.G. et al. Natural Sunlight Induced Photooxidation of Naphthalene in Aqueous Solution. Water, Air, & Soil Pollution 136, 347–359 (2002). https://doi.org/10.1023/A:1015223806182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015223806182

Navigation