Skip to main content
Log in

Approximate Symbolic Analysis of Hierarchically Decomposed Analog Circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a methodology for the symbolic analysis of large analog integrated circuits using a hierarchical approach. The drawbacks of previous approaches are solved by the introduction of error-controlled approximation strategies. A proper modeling methodology through the different hierarchical levels allows to combine the optimum techniques for generation of the symbolic expressions and the most efficient numerical techniques for error control. These approximation strategies together with mechanisms for partitioning and union of blocks through the hierarchy yield optimum results in terms of speed, accuracy and complexity of the symbolic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández, F. V., Rodríguez-Vázquez, A., Huertas, J. L. and Gielen, G. (eds.), Symbolic Analysis Techniques. Applications to Analog Design Automation. IEEE Press, 1998.

  2. Starzyk, J. and Sliwa, E., “Hierarchic decomposition method for the topological analysis of electronic networks.” Int. J. Circuit Theory and Applications 8, pp. 407-417, 1980.

    Google Scholar 

  3. Starzyk, J. A. and Konczykowska, A., “Flowgraph analysis of large electronic networks.” IEEE Trans. Circuit and Systems CAS-33(3), pp. 302-315, March 1986.

    Google Scholar 

  4. Hassoun, M. M., “Hierarchical symbolic analysis of large-scale systems using a Mason's signal flowgraph model,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 801-805, 1991.

  5. Hassoun, M. M. and McCarville, K. S., “Symbolic analysis of large-scale networks using a hierarchical signal flowgraph approach.” Analog Int. Circuits and Signal Proc. 3, pp. 31-42, January 1993.

    Google Scholar 

  6. Hassoun, M. M. and Lin, P. M., “A new network approach to symbolic simulation of large-scale circuits,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 806-809, May 1989.

  7. Hassoun, M. M. and Lin, P. M., “A hierarchical network approach to symbolic analysis of large-scale networks.” IEEE Trans. Circuits and Syst.-I 42(4), pp. 201-211, April 1995.

    Google Scholar 

  8. Hassoun, M. M., “Hierarchical symbolic analysis of large analog circuits.” In: F. V. Fernández, A. Rodríguez-Vázquez, J. L. Huertas and G. E. Gielen (eds.). Symbolic Analysis Techniques. Applications to Analog Design Automation, Chapter 5. IEEE Press, 1998.

  9. Mason, S. J., “Feedback theory, some properties of signal flow graph,” in Proc. of IRE 41, pp. 1144-1156, September 1953.

    Google Scholar 

  10. Wambacq, P., Fernández, F. V., Gielen, G., Sansen, W. and Rodríguez-Vázquez, A., “A family of matroid intersection algorithms for the computation of approximated symbolic network functions,” in Proc. IEEE Int. Symp. Circuits and Syst., Atlanta, pp. 806-809, 1996.

  11. Guerra, O., Rodríguez-García, J. D., Roca, E., Fernández, F. V. and Rodríguez-Vázquez, A., “A simplification before and during generation methodology for symbolic large-circuits analysis,” in Proc IEEE Int. Conf. Electronic Circuits and Systems 3, pp. 81-84, September 1998.

    Google Scholar 

  12. Rodríguez-García, J. D., Guerra, O., Roca, E., Fernández, F. V. and Rodríguez-Vázquez, A., “Error control in simplification before generation algorithms for symbolic analysis of large analogue circuits.” IEE Electronic Letters 35, pp. 260-261, February 1999.

    Google Scholar 

  13. Lin, P. M., Symbolic Network Analysis. Elsevier, 1991.

  14. Vlach, J. and Singhal, K., Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold, 1994.

  15. Nitescu, M. and Constantinescu, F., “Symbolic vs. numeric hierarchical methods for solving repetitive computation problems,” in Proc. Int. Workshop on Symbolic Methods and Applications to Circuit Design, October 1996.

  16. Hsu, J. and Sechen, C., “Fully symbolic analysis of large analog integrated circuits,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 21.4.1-21.4.4, 1994.

  17. Yu, Q. and Sechen, C., “A unified approach to the approximated symbolic analysis of large analog integrated circuits.” IEEE Trans. Circuits and Syst.-I 43(8), pp. 656-669, 1996.

    Google Scholar 

  18. Fernández, F. V., Guerra, O., Rodríguez-García, J. D. and Rodríguez-Vázquez, A., “Symbolic analysis of large analog integrated circuits: The numerical reference generation problem.” IEEE Trans. Circuits and Syst.-II 45(10), pp. 1351-1361, October 1998.

    Google Scholar 

  19. Moore, R. E., Methods and Applications of Interval Analysis. Studies in Applied Mathematics, 1979.

  20. Kolev, L. V., Interval Methods for Circuit Analysis. World Scientific, 1993.

  21. Lawler, E. L., Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 1976.

  22. Camerini, P. M. and Hamacher, H. W., “Intersection of two matroids: (Condensed) border graph and ranking.” SIAM J. Disc. Math. 2, pp. 16-27, February 1989.

    Google Scholar 

  23. Sedra, A. S. and Smith, K. C., Microelectronic Circuits. Holt Rinehart and Winston, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, O., Roca, E., Fernández, F.V. et al. Approximate Symbolic Analysis of Hierarchically Decomposed Analog Circuits. Analog Integrated Circuits and Signal Processing 31, 131–145 (2002). https://doi.org/10.1023/A:1015094011107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015094011107

Navigation