Skip to main content
Log in

GIPSCAL revisited. A projected gradient approach

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A model for analysis and visualization of asymmetric data—GIPSCAL—is reconsidered by means of the projected gradient approach. GIPSCAL problem is formulated as initial value problem for certain first order matrix ordinary differential equations. This results in a globally convergent algorithm for solving GIPSCAL. Additionally, first and second order optimality conditions for the solutions are established. A generalization of the GIPSCAL model for analyzing three-way arrays is also considered. Finally, results from simulation experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Calvo M.P., Israels A., and Zanna A. 1996.Runge-Kutta methods for orthogonal and isospectral flows.Technical Report 1996/NA08, DAMTP, University of Cambridge.

  • Carroll J.D. and Chang J.J. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35: 283-319.

    Google Scholar 

  • Chino N. 1978. A graphical technique for representation asymmetric relationships between n objects. Behaviormetrika 5: 23-40.

    Google Scholar 

  • Chu M.T. 1994. A list of matrix flows with applications. Fields Institute Communications 3: 87-97.

    Google Scholar 

  • Chu M.T. and Driessel K.R. 1990. The projected gradient method for least squares matrix approximations with spectral constraints. SIAM J. Numer. Anal. 27: 1050-1060.

    Google Scholar 

  • Chu M.T. and Trendafilov N.T. 1998. On a differential equation approach to the weighted orthogonal Procrustes problem. Statistics and Computing 8: 125-133.

    Google Scholar 

  • Constantine A.G. and Gower J.C. 1978. Graphical representation of asymmetric matrices. Appl. Statist. 27: 297-304.

    Google Scholar 

  • Diele F., Lopez L., and Peluso R. 1998. The Cayley transform in the numerical solution of unitary differential systems. Advances in Computational Mathematics 8: 317-334.

    Google Scholar 

  • Edelman A., Arias T., and Smith S.T. 1998. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. and Appl. 20: 303-353.

    Google Scholar 

  • Engø K., Marthinsen A., and Munthe-Kaas H. 1997. DiffMan—an object oriented MATLAB toolbox for solving differential equations on manifolds (User's Guide). Available at http://www.math.ntnu.no/num/synode/.

  • Faddeev D.K. and Faddeewa W.N. 1963. Computational Methods of Linear Algebra. Freeman, San Francisco.

    Google Scholar 

  • Gower J.C. 1977. The analysis of asymmetry and orthogonality. In: Barra J.R., Brodeau F., Romier G., and van Cutsem B. (Eds.), Recent Developments in Statistics. North Holland, Amsterdam, pp. 109-123

    Google Scholar 

  • Harshman R.A. 1978.Models for analysis of asymmetrical relationships among N objects or stimuli. Paper presented at the First Joint Meeting of the Psychometric Society and the Society of Mathematical Psychology, Hamilton, Ontario, Canada

  • Harshman R.A., Green P.E., Wind Y., and Lundy M.E. 1982. A model for the analysis of asymmetric data in marketing research. Marketing Science 1: 205-242.

    Google Scholar 

  • Harshman R.A. and Kiers H.A.L. 1987.Algorithms for DEDICOM analysis of asymmetric data. Paper presented at the European Meeting of the Psychometric Society, Enschede, The Netherlands.

  • Helmke U. and Moore J.B. 1994. Optimization and Dynamical Systems, Springer Verlag, London.

    Google Scholar 

  • Hirsch M.W. and Smale S. 1974. Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, London.

    Google Scholar 

  • Kelley C.T. 1999. Iterative Methods for Optimization. SIAM, Philadelphia

    Google Scholar 

  • Kiers H.A.L. 1989.An alternating least squares algorithm for fitting the two-and three-way DEDICOM model and the IDIOSCAL model. Psychometrika 55:515-521.

    Google Scholar 

  • Kiers H.A.L. 1990. Majorization as a tool for optimizing a class of matrix functions. Psychometrika 55:417-428.

    Google Scholar 

  • Kiers H.A.L., ten Berge J.M.F., Takane Y., and De Leeuw J. 1990. A generalization of Takane's algorithm for DEDICOM. Psychometrika 55:151-158.

    Google Scholar 

  • Kiers H.A.L. and Takane Y. 1994. A generalization of GIPSCAL for the analysis of nonsymmetric data, Journal of Classification 11: 79-99.

    Google Scholar 

  • Krzanowski W.J. 1988. Principles of Multivariate Analysis: A User's Perspective. Clarendon Press, Oxford.

    Google Scholar 

  • Lippert R.A. and Edelman A. 2000. Nonlinear eigenvalue problems with orthogonality constraints (Section 9.4). In: Bai Z., Demmel J., Dongarra J., Ruhe A., and van der Vorst H. (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philidelphia, pp. 290-314.

    Google Scholar 

  • Magnus J.R. and Neudecker H. 1988. Matrix Differential Calculus with Application in Statistics and Econometrics. Wiley, New York.

    Google Scholar 

  • Ortega J.M. 1987. Matrix Theory: A Second Course. Plenum Press, New York.

    Google Scholar 

  • Shampine L.F. and Reichelt M.W. 1997. The MATLAB ODE suite. SIAM Journal on Scientific Computing 18: 1-22.

    Google Scholar 

  • Stiefel E. 1935/1936. Richtungsfelder und fernparallelismus in n-dimensionalel manning faltigkeiten. Commentarii Mathematici Helvetici 8: 305-353.

    Google Scholar 

  • Stiefel E. 1963. An Introduction to Numerical Analysis. Academic Press, New York.

    Google Scholar 

  • Takane Y. 1985. Diagonal estimation in DEDICOM. In Proceedings of the 1985 Annual Meeting of the Behaviormetric Society Sapporo. pp. 100-101.

  • Trendafilov N.T., De Moor B., and Cambré J. 1997. A projected gradient approach for analyzing asymmetric data. Technical Report, ESAT-SISTA/TR 1997-113, KULeuven. Available at http://www.mech.kuleuven.ac.be/∼ntrendaf.

  • Trendafilov N.T. and Murakami T. 1998. Orthonormality-constrained INDSCAL with nonnegative saliences. Full and off-diagonal fitting, Internal Report, PMA-KULeuven. Available at http://www.mech.kuleuven.ac.be/∼ntrendaf/pubs.htm.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trendafilov, N.T. GIPSCAL revisited. A projected gradient approach. Statistics and Computing 12, 135–145 (2002). https://doi.org/10.1023/A:1014882518644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014882518644

Navigation