Skip to main content
Log in

Controlled DNA Delivery Systems

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Genes are of increasing interest as pharmaceuticals, but current methods for long-term gene delivery are inadequate. Controlled release systems using biocompatible and/or biodegradable polymers offer many advantages over conventional gene delivery approaches. We have characterized systems for controlled delivery of DNA from implantable polymer matrices (EVAc: poly (ethylene-co-vinyl acetate)) and injectable microspheres (PLGA and PLA: poly (D, L-lactide-co-glycolide) copolymer and poly (L-lactide), respectively).

Methods. Herring sperm DNA and bacteria phage λ DNA were encapsulated as a model system. Released DNA concentration was determined by fluoroassays. Agarose electrophoresis was used to determine the dependence of release rate on DNA size. The Green Fluorescent Protein (GFP) gene was used to determine the integrity and functionality of released DNA.

Results. Both small and large DNA molecules (herring sperm DNA, 0.1−0.6 kb; GFP, 1.9 kb; λ DNA, 48.5 kb) were successfully encapsulated and released from EVAc matrices, and PLGA or PLA microspheres. The release from DNA-EVAc systems was diffusion-controlled. When co-encapsulated in the same matrix, the larger λ DNA was released more slowly than herring sperm; the rate of release scaled with the DNA diffusion coefficient in water. The chemical and biological integrity of released DNA was not changed.

Conclusions. These low cost, and adjustable, controlled DNA delivery systems, using FDA-approved biocompatible/biodegradable and implantable/injectable materials, could be useful for in vivo gene delivery, such as DNA vaccination and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Felgner. Direct gene transfer into mouse muscle in vivo. Science 47:1465-1468 (1990).

    Google Scholar 

  2. J. J. Donnelly, J. B. Ulmer, J. W. Shiver, and M. A. Liu. DNA vaccines. Annu. Rev. Immunol. 15:617-648 (1997).

    Google Scholar 

  3. W. F. Anderson. Human gene therapy. Nature 392:25-30 (1998).

    Google Scholar 

  4. R. G. Crystal. Transfer of genes to humans: early lessons and obstacles to success. Science 270:404-410 (1995).

    Google Scholar 

  5. S. K. Tripathy, H. B. Black, E. Goldwasser, and J. M. Leiden. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 2:545-550 (1996).

    Google Scholar 

  6. A. R. Thierry, P. Rabinovich, B. Peng, L. C. Mahan, J. L. Bryant, and R. C. Gallo. Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 4:226-237 (1997).

    Google Scholar 

  7. Y. Liu, D. Liggitt, W. Zhong, G. Tu, K. Gaensler, and R. Debs. Cationic liposome-mediated intravenous gene delivery. J Biol. Chem. 270:24864-24870 (1995).

    Google Scholar 

  8. N. Ishii, J. Fukushima, T. Kaneko, E. Okada, K. Tani, S. I. Tanaka, K. Hamajima, K. Q. Xin, S. Kawamoto, W. Koff, K. Nishioka, T. Yasuda, and K. Okuda. Cationic liposomes are a strong adjuvant for a DNA vaccine of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 13:1421-1428 (1997).

    Google Scholar 

  9. P. Erbacher, S. Zou, T. Bettinger, A. M. Steffan, and J. S. Remy. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability [In Process Citation]. Pharm. Res. 15:1332-1339 (1998).

    Google Scholar 

  10. P. Erbacher, A. C. Roche, M. Monsigny, and P. Midoux. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta 1324:27-36 (1997).

    Google Scholar 

  11. J. E. Murphy, T. Uno, J. D. Hamer, F. E. Cohen, V. Dwarki, and R. N. Zuckermann. A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc. Natl. Acad. Sci. U S A 95:1517-1522 (1998).

    Google Scholar 

  12. E. F. Fynan, R. G. Webster, D. H. Fuller, J. R. Haynes, J. C. Santoro, and H. L. Robinson. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl. Acad. Sci. U S A 90:11478-11482 (1993).

    Google Scholar 

  13. S. L. Hart, R. P. Harbottle, R. Cooper, A. Miller, R. Williamson, and C. Coutelle. Gene delivery and expression mediated by an integrin-binding peptide Gene Ther. 2:552-554 (1995).

    Google Scholar 

  14. S. Katayose, and K. Kataoka. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug. Chem. 8:702-707 (1997).

    Google Scholar 

  15. J. S. Kim, B. I. Kim, A. Maruyama, T. Akaike, and S. W. Kim. A new non-viral DNA delivery vector: the terplex system. J. Contr. Rel. 53:175-182 (1998).

    Google Scholar 

  16. M. J. Mahoney, and W. M. Saltzman. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J. Pharm. Sci. 85:1276-1281 (1996).

    Google Scholar 

  17. S. Cohen, T. Yoshioka, M. Lucarelli, L. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8:713-720 (1991).

    Google Scholar 

  18. W. M. Saltzman, and R. Langer. Transport rates of proteins in porous materials with known microgeometry. Biophys. J. 55:163-171 (1989).

    Google Scholar 

  19. R. Siegel, and R. Langer. Controlled Release of Polypeptides and Other Macromolecules. Pharm. Res.:2-10 (1984).

  20. E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chickering, P. Chaturvedi, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett, and C. Morrell. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410-414 (1997).

    Google Scholar 

  21. Y. S. Jong, J. S. Jacob, K. P. Yip, G. Gardner, E. Seitelman, M. Whitney, S. Montgomery, and E. Mathiowitz. Controlled release of plasmid DNA. J. Contr. Rel. 47:123-134 (1997).

    Google Scholar 

  22. V. Labhasetwar, J. Bonadio, S. Goldstein, W. Chen, and R. J. Levy. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 87:1347-1350 (1998).

    Google Scholar 

  23. D. Wang, D. R. Robinson, G. S. Kwon, and J. Samuel. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Contr. Rel. 57:9-18 (1999).

    Google Scholar 

  24. S. Ando, D. Putnam, D. W. Pack, and R. Langer. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 88:126-130 (1999).

    Google Scholar 

  25. C. E. Beaty, and W. M. Saltzman. Controlled growth factor delivery induces differental neurite outgrowth in three-dimensional cell cultures. J. Contr. Rel. 24:15-23 (1993).

    Google Scholar 

  26. D. H. Jones, S. Corris, S. McDonald, J. C. Clegg, and G. H. Farrar. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15:814-817 (1997).

    Google Scholar 

  27. C. E. Krewson, R. Dause, M. Mak, and W. M. Saltzman. Stabilization of nerve growth factor in controlled release polymers and in tissue. J. Biomater. Sci. Polym. Ed. 8:103-117 (1996).

    Google Scholar 

  28. R. Langer, and J. Folkman. Polymers for the sustained release of proteins and other macromolecules. Nature 263:797-800 (1976).

    Google Scholar 

  29. W. Dang, and W. M. Saltzman. Dextran retention in the rat brain following release from a polymer implant. Biotechnol. Prog. 8:527-532 (1992).

    Google Scholar 

  30. K. Soda, and A. Wada. Dynamic Light-Scattering Studies on Thermal Motions of Native DNAs In Solution. Biophys. Chem. 20:185-200 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mark Saltzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, D., Woodrow-Mumford, K., Belcheva, N. et al. Controlled DNA Delivery Systems. Pharm Res 16, 1300–1308 (1999). https://doi.org/10.1023/A:1014870102295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014870102295

Navigation