Skip to main content
Log in

HPLC Determination of Binding of Cisplatin to DNA in the Presence of Biological Thiols: Implications of Dominant Platinum-Thiol Binding to Its Anticancer Action

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work is to evaluate the extent of the binding of cisplatin (cis-diamminedichloroplatinum(II)) to DNA in the presence and absence of biological thiols, glutathione, and cysteine, and to test the hypothesis whether the platinum-thiol complexes can serve as a drug reservoir for subsequent binding to DNA.

Methods. Reactions of cisplatin (50 μM to 1.0 mM) with calf thymus DNA (870 μM to 6.75 mM) in the presence and absence of glutathione and cysteine (0 to 10mM) were carried out at pH 4.4, 7.0, and 7.3. Following the reactions, the DNA was enzymatically digested with nucleases, separated by RP HPLC, and analyzed to determine the extent of DNA binding. The method was independently verified by proton NMR measurements.

Results. At neutral pH, and equimolar concentrations of DNA and thiols, only a very small amount of platinum (<5%) was coordinated to DNA, and most of the platinum was coordinated to the thiols. At pH 4.4, binding to DNA was dominant over the binding to thiols. No conversion of platinum-thiol to platinum-DNA complexes was observed up to 7 days of incubation.

Conclusion. At physiological pH, the cisplatin was exclusively coordinated to biological thiols and platinum-DNA was a minor adduct. Data presented in this paper does not support the “drug reservoir” hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Morris, P. J. Eifel, J. D. Lu, P. W. Grigsby, C. Levenback, R. E. Stevens, M. Rotman, D. M. Gershenson, and D. G. Mutch. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. New Eng. J. Med. 340:1137–1143 (1999).

    Google Scholar 

  2. P. G. Rose, B. N. Bundy, E. B. Watkins, J. T. Thigpen, G. Deppe, M. A. Maiman, D. L. Clarke-Pearson, and S. Insalaco. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. New Eng. J. Med. 340:1144–1153 (1999).

    Google Scholar 

  3. H. M. Keys, B. N. Bundy, F. B. Stehman, L. I. Muderspach, W. E. Chafe, C. L. Suggs, J. L. Walker, and D. Gersell. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. New Eng. J. Med. 340:1154–1161 (1999).

    Google Scholar 

  4. A. Eastman. Activation of programmed cell-death by anticancer agents-cisplatin as a model system. Cancer Cells. 2:275–280 (1990).

    Google Scholar 

  5. C. M. Sorenson and A. Eastman. Mechanism of cis-diamminedichloroplatinum(II)-induced cytotoxicity-role of G2 arrest and DNA double-strand breaks. Cancer Res. 48:4484–4488 (1988).

    Google Scholar 

  6. M. A. Barry, C. A. Behnke, and A. Eastman. Activation of programmed cell-death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmcol. 40:2353–2362 (1990).

    Google Scholar 

  7. E. R. Jamieson and S. J. Lippard. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99:2467–2498 (1999).

    Google Scholar 

  8. A. Eastman. Reevaluation of interaction of Cis-dichloro (ethylenediamine) platinum(II) with DNA. Biochemistry. 25:3912–3915 (1986)

    Google Scholar 

  9. R. N. Bose, S. Moghaddas, E. Weaver, and E. W. Cox. Reactivity of glutathione and cysteine toward platinum(II) in the presence and absence of guanosine-58-monophosphate. Inorg. Chem. 34: 5878–5883 (1995)

    Google Scholar 

  10. L. L. Slavin, E. W. Cox, and R. N. Bose. Platinum(II)-thionucleotide complexes: Model substrates for phosphate hydrolysis. Bioconjugate Chem. 5:316–320 (1994).

    Google Scholar 

  11. R. N. Bose, R. D. Cornelius, and R. E. Viola. Multinuclear NMR and kinetics of formation of platinum(II) nucleotides. J. Am. Chem. Soc. 108:4403–4411 (1986).

    Google Scholar 

  12. J. Reedijk. Why does cisplatin reach guanine-N7 with competing s-donor ligands available in the cell? Chem Revs. 99:2499–2510 (1999).

    Google Scholar 

  13. S. C. Dhara. A rapid method for the synthesis of cis-[Pt(NH3)2Cl2] Ind. J. Chem. 8:193–194 (1970).

    Google Scholar 

  14. L. Bennett, R. N. Bose, and N. Goswani. New insights into the mechanisms of the cis-platin-guanosine-58-monophosphate reaction. J. Chem. Soc. Chem. Comm. 432-433 (1989).

  15. D. Li and R.N. Bose. Insight into the preferential instrastrand DNA binding by platinum(II) though adjacent guanine bases. J. Chem. Soc. Chem. Comm. 1596-1598 (1992)

  16. R. N. Bose, R. E. Viola, and R. D. Cornelius. Phosphorus-31 NMR characterization and kinetics of formation of ortho-, pyro-, and tri-phosphato complexes of platinum(II). J. Am. Chem. Soc. 106:3336–3344 (1984).

    Google Scholar 

  17. L. L. Slavin and R. N. Bose. Phosphonato complexes of platinum(II): Kinetics of formation and phosphorus-31 NMR studies. J. Inorg. Biochem. 40:339–347 (1990).

    Google Scholar 

  18. S. Mansy, G. Y. H. Chu, R. E. Duncan, and R. S. Tobias. Heavy metal nucleotide interactions. 12. Competitive reactions in systems of four nucleotides with cis-or trans-diammineplatinum(II). Raman difference spectrophotometric determination of the relative nucleophilicity of guanosine, cytidine, adenosine, and uridine monophosphates as well as the analogous bases in DNA. J. Am. Chem. Soc. 100:607–616 (1978).

    Google Scholar 

  19. E. L. M. Lempers, K. Inagaki, and J. Reedijk. Reactions of [PtCl (dien)]Cl with glutathione, oxidized glutathione and s-methyl glutathione-formation of an s-bridged dinuclear unit. Inorg. Chim. Acta 152:201–207 (1988).

    Google Scholar 

  20. E. L. M. Lempers and J. Reedijk. Characterization of products from [Ptcl (dien)]Cl and s-adenosyl-l-homocysteine-evidence for a pH-dependent migration of the platinum moiety from the sulfur atom to the amine group and vice-versa. Inorg. Chem. 29:1880–1884 (1990).

    Google Scholar 

  21. S.S.G.E. van Boom and J. Reedijk. Unprecedented migration of [Pt (dien)]2+ (dien41,5-diamino-3-azapentane) from sulfur to guanosine-N7 in s-guanosyl-l-homocysteine (SGH). J. Chem. Soc. Chem. Comm. 1397-1398 (1993).

  22. J. M. Teuben, S. S. G. E. van Boom, and J. Reedijk. Intramolecular migration of co-ordinated platinum from a sulfur to N-7 in the nucleopeptide Met-d(TpG)(5'-O-methioninate-Nylcarbonylthymidine 28deoxyguanosine monophosphate). J. Chem. Soc. Dalton Trans. 3979-3980 (1997).

  23. K. J. Barnham, M. I. Djuran, P. D. Murdoch, J. D. Ranford, and P. J. Sadler. L-methionine increases the rate of reaction of 5´-guanosine monophosphate with the anticancer drug cisplatinmixed-ligand adducts and reversible methionine binding. J. Chem. Soc. Dalton Trans. 3721-3726 (1995)

  24. A. F. M. Siebert and W. S. Sheldrick. pH-dependent competition between N,S and N,N' chelation in the reaction of [Pt(en)(H20)2]2+ (en4H2NCH2CH2NH2) with methioninecontaining di-and tri-peptides. J. Chem. Soc. Dalton Trans. 385-393 (1997).

  25. K. J. Barnham, Z. J. Guo, and P. J. Sadler. Stabilization of mono-functional platinum-nucleotide adducts: Reactions of N-acetyl-l-methionine complexes with guanosine 5´-monophosphate and guanylyl (3´-5´) guanosine. J. Chem. Soc. Dalton Trans. 2867-2876 (1996).

  26. T. Ishikawa and F. Ali-Osman.Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia-cells-molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem. 268:20116–20125 (1993).

    Google Scholar 

  27. K. A. Herminger, S. D. Hartson, J. Rogers, and R. L. Matts. Cisplatin inhibits protein synthesis in rabbit reticulocyte lysate by causing an arrest in elongatin. Arch. Bioch. Biophy. 344:200–207 (1997).

    Google Scholar 

  28. A. K. Godwin, A. Meister, P. J. O'Dwyer, C. S. Huang, T. C. Hamilton, and M. E. Anderson. High-resistance to cisplatin in human ovarian-cancer cell-lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA 89: 3070–3074 (1992).

    Google Scholar 

  29. V. M. Richon, N. Schulte, and A. Eastman. Multiple mechanisms of resistance to cis-diamminedichloroplatinum(II) in murine leukemia-L1210 cells. Cancer Res. 47:2056–2061 (1987).

    Google Scholar 

  30. P. Mistry, L. R. Kelland, G. Abel, S. Sidhar, and K. R. Harrap. The relationships between glutathione, glutathione-s-transferase and cytotoxicity of platinum drugs and melphalan in 8 human ovarian-carcinoma cell-lines. Br. J. Cancer. 64:215–220 (1991).

    Google Scholar 

  31. M. Treskes and W. J. F. van der Vijgh. WR2721 as a modulator of cisplatin-induced and carbonplatin-induced side-effects in comparison with other chemoprotective agents-a molecular approach. Cancer Chemother. Pharmacol. 33:93–106 (1993).

    Google Scholar 

  32. A. E. C. Korst, C. M. Eeltink, J. B. Vermorken, and W. J. F. van der Vijgh. Pharmacokinetics of amifostine and its metabolites in patients. Eur. J. Cancer. 33:1425–1429 (1997).

    Google Scholar 

  33. S. J. Berners-Price, K. J. Barnham, U. Frey, and P. J. Sadler. Kinetic analysis of the stepwise platination of single-and double-stranded GG oligonucleotide with cisplatin and cis-[PtCl(H2O)(NH)2]+. Chem. Eur. J. 2:1283–1291 (1996).

    Google Scholar 

  34. A. M. Fichtinger-Schepman, J. L. van der Veer, J. H. den Hartog, P. M. Lohman, and J. Reedijik. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24:707–713 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathindra N. Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volckova, E., Dudones, L.P. & Bose, R.N. HPLC Determination of Binding of Cisplatin to DNA in the Presence of Biological Thiols: Implications of Dominant Platinum-Thiol Binding to Its Anticancer Action. Pharm Res 19, 124–131 (2002). https://doi.org/10.1023/A:1014268729658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014268729658

Navigation