Skip to main content
Log in

Slow Relaxation Process in DNA

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A dynamic transition at temperatures ∼200–230K is observed in manyhydrated bio-polymers. It shows up as a sharp increase of the mean-squaredatomic displacements above this temperature range. We present neutronscattering data of DNA at different levels of hydration. The analysis showsthat the dynamic transition in DNA is related to a slow relaxation processin the MHz-GHz frequency range. This slow relaxation process iscompletely suppressed in the dry DNA sample where no dynamic transitionwas observed. The nature of the slow process is discussed. We ascribe it toa global relaxation of DNA molecule that involves cooperative motion ofmany base-pairs and backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nienhaus, G.U., Mourant, J.R. and Frauenfelder, H.: Spectroscopic Evidence for Conformational Relaxation in Myoglobin, Proc. Natl. Acad. Sci. USA 89 (1992), 2902–2906. Post, F., Doster, W., Karvounis G. and Settles, M.: Structural Relaxation and Nonexponetial Kinetics of CO-Binding to Horse Myoglobin, Biophys. J. 64 (1993), 1833–1842.

    Google Scholar 

  2. Parak, F., et al.: Evidence for a Correlation Between the Photoinduced Electron-Transfer and Dynamic Properties of the ChromophoreMembranes from Rhodospirillum-Rubrum FEBS Lett. 117 (1980), 368–372.

    Google Scholar 

  3. Rasmussen, B.F., Stock, A.M., Ringe, D. and Petsko, G.A.: Crystalline Ribonuclease-A Loses function Below the Dynamic Transition at 220-K, Nature 357 (1992), 423–424.

    Google Scholar 

  4. Ferrand, M., Dianoux, A.J., Petry, W. and Zaccai, G.: Thermal Motions and Functions of Bacteriorhodopsin in Purple Membranes-Effects of Temperature and Hydration Studied by Neutron Scattering, Proc. Natl. Ac. Sci. USA 90 (1993), 9668–9672.

    Google Scholar 

  5. Doster, W., Cusak, S. and Petry,W.: Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering, Nature 337 (1989), 754–756.

    Google Scholar 

  6. Tsai, A.M., Neumann, D.A. and Bell, L.N.: Molecular Dynamics of Solid-State Lysozyme as Affected by Glycerol and Water: A Neutron Scattering Study, Biophys. J. 79 (2000), 2728–2732.

    Google Scholar 

  7. Cordone, L., Ferrand, M., Vitrano, E. and Zaccai, G.: Harmonic Behavior of Ytrehalose-Coated Carbon-Monoxy-Myoglobin at High Temperature. Biophys. J. 76 (1999) 1043–1047.

    Google Scholar 

  8. Sokolov, A.P., Grimm, H., Kisliuk, A. and Dianoux, A.J.: Slow Relaxation Process in DNA at Different Levels of Hydration, J. Biol. Phys. S1-S5 (2000).

  9. Rupprecht, A.: Preparation of Oriented DNA by Wet Spinning, Acta Chem. Scand. 20 (1966) 494–504.

    Google Scholar 

  10. Grimm, H. and Rupprecht, A.: Statics and Dynamics of oriented DNA as seen by Neutrons, Physica B 174 (1991) 291–299.

    Google Scholar 

  11. Grimm, H. and Rupprecht, A.: Low Frequency Dynamics of DNA, Physica B 234-236 (1997), 183–187.

    Google Scholar 

  12. Lindsay, S.M., Lee, S.A., Weidlich, T., Demarco, C., Lewen, G.D. and Tao, N.J.: The Origin of the A to B Transition in DNA Fibers and Films, Biopolymers 27 (1988) 1015–1043.

    Google Scholar 

  13. Transport Theory and Statistical Physics, Special Issue Devoted to Relaxation Kinetics in Supercooled Liquids-Mode Coupling Theory and Its Experimental Tests, Eds. Nelson, P. and Allen, G.D.,24 (1995) 755–1268.

  14. Bennemann, C., Baschnagel, J. and Paul, W.: Molecular-Dynamics Simulation of a Glassy Polymer Melt: Incoherent Scattering Function, Eur.Physical J. B 10 (1999) 323–334.

    Google Scholar 

  15. Rössler, E., Sokolov, A.P., Kisliuk, A. and Quitmann, D.: Low-Frequency Raman Scattering on Different Types of Glass Formers used to Test Predictions of Mode-Coupling Theory, Phys. Rev. B 49 (1994) 14967–14978.

    Google Scholar 

  16. Franosch, T., et al.: The Evolution of Structural Relaxation Spectra of Glycerol within the Giga Hertz Band, Phys. Rev. E 55 (1997) 3183–3190.

    Google Scholar 

  17. Bergman, R., et al.: Dynamics around the Liquid-Glass Transition in Poly(propylene-glycol) Investigated by Wide-Frequency-Range Light-Scattering Techniques, Phys. Rev. B 56 (1997) 11619–11628.

    Google Scholar 

  18. Kisliuk, A., Mathers, R.T. and Sokolov, A.P.: Crossover in Dynamics of Polymeric Liquids: Back to TII ? J. Pol. Sci. Phys. 38 (2000) 2785–2790.

    Google Scholar 

  19. Fitter, J., Lechner, R.E. and Dencher, N.A., Biophys. J. 73 (1997), 2126.

    Google Scholar 

  20. Sokolov, A.P., Grimm, H. and Kahn, R.: Glassy Dynamics in DNA: Ruled by Water of Hydration? J. Chem. Phys. 110 (1999), 7053–7057.

    Google Scholar 

  21. Mashimo, S., et al.: Dielectric Study on Dynamics and Structure ofWater Bound to DNA Using a Frequency Range 107-1010 Hz, J. Phys. Chem. 93 (1989), 4963–4967.

    Google Scholar 

  22. Hogan, M.E. and Jardetzky, O.: Internal Motions in Deoxynucleic Acid II, Biochemistry 19 (1980), 3460–3468.

    Google Scholar 

  23. Early, T.A. and Kearns, D.R. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 4170–4174.

    Google Scholar 

  24. Sokolov, A.P., Hurst, J. and Quitmann, D.: Dynamics of Supercooled Water: Mode-Coupling Theory Approach, Phys. Rev. B 51 (1995), 12865–12868.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, A., Grimm, H., Kisliuk, A. et al. Slow Relaxation Process in DNA. Journal of Biological Physics 27, 313–327 (2001). https://doi.org/10.1023/A:1014228824104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014228824104

Navigation