Skip to main content
Log in

Experimental investigations and modelling studies of ozone producing corona discharges

  • Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The ozone generation by negative corona discharge in coaxial cylindrical system of electrodes have been studied experimentally in Ar+O2 and N2+O2 mixtures. Both in argon and nitrogen mixtures with oxygen the monotonous decrease in ozone concentration [O3] was observed at decreasing oxygen content in mixtures and the constant input energy density η. The rate coefficients for the ozone generation and ozone decomposition were obtained by fitting experimentally measured data [O3]=f(η) with Vasiljev-Eremin formula. The calculated rate coefficient for ozone generation in N2+O2 mixtures at low content of oxygen (below 20%) was found considerably higher than that in Ar+O2 mixtures. Increase in the rate coefficients for ozone generation and decomposition was observed with decreasing content of oxygen in both mixtures. The experimental results are in qualitative agreement with the simple model incorporating five main chemical processes in mechanism of ozone generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Briner and B. Bever: Helv. Chim. Acta25 (1942) 900.

    Article  Google Scholar 

  2. G.S. Glockner and C Lind:Electrochemistry of Gases and Other Dielectrics, Wiley, New York, 1939.

    Google Scholar 

  3. A.M. Juliard: Bull. Acad. Roy. Belg.12 (1926) 914.

    Google Scholar 

  4. W.E. Cromwell and T.C. Manley: inOzone Chemistry and Technology, American Chemical Society, Washington, 1959, p. 304.

    Google Scholar 

  5. E. Inoue and K. Sugino: inOzone Chemistry and Technology, American Chemical Society, Washington, 1959, p. 313.

    Google Scholar 

  6. Y.V. Filippov and V.P. Vendillo: Zh. Fiz. Chim.36 (1962) 1987.

    Google Scholar 

  7. Y.V. Filippov and V.P. Vendillo: Zh. Fiz. Chim.35 (1961) 624.

    Google Scholar 

  8. R. Peyrous, C. Monge, and B. Held: Czech. J. Phys.49 (1999) 289.

    Article  ADS  Google Scholar 

  9. V. Sobek, J.D. Skalny, and P. Lukac: Le Vide, Les Couches Minces-Supplement256 (1991) 73.

    Google Scholar 

  10. J.S. Chang, T.A. Myint, A. Chakrabarti, and A. Miziolek: inProc. 3rd Int. Conf. on Reactive Plasmas, Nara (Japan), 1997, p. 369.

  11. T. Oda, T. Takahashi, and K. Tada K: inProc. IEEE IA Soc. Annual Meet., New Orleans (United States), 1997, p. 165.

  12. R.A. Akhmedzhanov, A.L. Vikharev, A.M. Gorbachev, O.A. Ivanov, and A.L. Kolysko: Tech. Phys. Lett22 (1996) 104.

    ADS  Google Scholar 

  13. R.A. Akhmedzhanov, A.L. Vikharev, A.M. Gorbachev, O.A. Ivanov, and A.L. Kolysko: Teplofiz. Vys. Temp.35 (1997) 524.

    Google Scholar 

  14. S. Okazaki, H. Niwa, H. Sugimitsu, M. Kogoma, and T. Inomata: inContributed Papers of HAKONE V, Milovy (Czech Republic), 1996, p. 26.

  15. V.V. Ryzhov and A. I. Suslov: Tech. Phys.44 (1999) 44.

    Article  Google Scholar 

  16. H.E. Elsayed-Ali and G.H. Miley: J. Appl. Phys.60 (1986) 1189.

    Article  ADS  Google Scholar 

  17. J.D. Skalny: Acta Phys. Univ. Comen.33 (1992) 71.

    Google Scholar 

  18. J.D. Skalny and P. Lukac: Acta Phys. Univ. Comen.33 (1992) 61.

    Google Scholar 

  19. J.D. Skalny and V. Sobek: inProc. 3rd HAKONE, Strasbourg (France), 1991, p. 185.

  20. R.E. Huffman: Can. J. Chem.47 (1969) 1823.

    Article  Google Scholar 

  21. H. Becker: Wiss. Veroffentl. Siemens-Konzern1 (1920) 76.

    Google Scholar 

  22. S.S. Vasilev, N.I. Kobozev, and E.N. Eremin: Zh. Fiz. Khim.7 (1936) 619.

    Google Scholar 

  23. B. Held and R. Peyrous: Eur. Phys. J. Appl. Phys.4 (1998) 73.

    Article  ADS  Google Scholar 

  24. J.D. Skalny, T. Mikoviny, N.J. Mason, and V. Sobek: Ozone Sci. Eng. (2001) in print.

  25. F.J. Loiseau, F. Lacassie, C. Monge, R. Peyrous, B. Held, and C. Coste: J. Phys D: Appl. Phys.27 (1994) 63.

    Article  ADS  Google Scholar 

  26. M. Simek, V. Babicky, M. Clupek, S. DeBendictis, G. Dilecce, and P. Sunka: J. Phys. D: Appl. Phys.31 (1998) 2591.

    Article  ADS  Google Scholar 

  27. BOLSIG Programme: http://www.kinema.com/siglo/bolsig.htm

  28. S. Hadj-Ziane: Doctorate Thesis, Pau University, Pau (France), 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was partially supported by Slovak Grant Agency under project 1/765920 The UK EPSRC (Grant GM/98944) and NATO Joint Project PST CLG 976544.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, N.J., Skalny, J.D. & Hadj-Ziane, S. Experimental investigations and modelling studies of ozone producing corona discharges. Czech J Phys 52, 85–94 (2002). https://doi.org/10.1023/A:1013917830994

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013917830994

PACS

Key words

Navigation