Skip to main content
Log in

Secondary metabolism in tobacco

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Tobacco has been quite well studied phytochemically, more than 2500 compounds have been identified. Here, the secondary metabolism in tobacco will be reviewed in a biosynthetic perspective. Major groups of compounds which have extensively been studied are the isoprenoids, alkaloids, cinnamoylputrescines, flavonoids, and anthocyanins. Their biosynthetic pathways and its regulation, and their occurrence in cell cultures and in intact plants will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alworth WL & Rapaport H (1965) Biosynthesis of the nicotine alkaloids in Nicotiana glutinosa: Interrelationships among nicotine, nornicotine, anabasine and anatabine. Arch. Biochem. Biophys. 112: 45–53

    Google Scholar 

  • Bach TJ (1987) Synthesis and metabolism of mevalonic acid in plants. Plant Physiol. Biochem. 25: 163–178

    Google Scholar 

  • Baldwin IT (1989) Mechanism of damage-induced alkaloid production in wild tobacco. J. Chem. Ecol. 15: 1661–1680

    Google Scholar 

  • Baldwin IT (1999) Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J. Chem. Ecol. 25: 3–30

    Google Scholar 

  • Baldwin IT, Schmelz EA & Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20: 2139–2157

    Google Scholar 

  • Basu P & Chand S (1996) Anthocyanin accumulation in Hyoscyamus muticus L. tissue cultures. J. Biotechnol. 52: 151–159

    Google Scholar 

  • Bate JN, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ & Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA. 91: 7608–7612

    Google Scholar 

  • Bennet JW & Bentley R (1989) What's in a name? Microbial secondary metabolism. Adv. Appl. Microbiol. 34: 1–28

    Google Scholar 

  • Benveniste P, Hirth L & Ourisson G (1966a) La biosynthèse des stérols dans les tissus de tabac cultivés in vitro - I. Isolement de stérols et de triterpénes. Phytochemistry 5: 31–44

    Google Scholar 

  • Benveniste P, Hirth L & Ourisson G (1966b) La biosynthèse des stérols dans les tissus de tabac cultivés in vitro - II. Particularités de la biosynthèse des phytostérols des tissus de tabac cultivés in vitro. Phytochemistry 5: 45–58

    Google Scholar 

  • Berlin J (1981) Formation of putrescine and cinnamoyl putrescines in tobacco cell cultures. Phytochemistry 20: 53–55

    Google Scholar 

  • Berlin J & Witte L (1982) Metabolism of phenylalanine and cinnamic acid in tobacco cell lines with high and low yields of cinnamoyl putrescines. J. Nat. Prod. 45: 88–93

    Google Scholar 

  • Berlin J, Knobloch KH, Höfle G & Witte L (1982) Biochemical characterization of two tobacco cell lines with different levels of cinnamoyl putrescines. J. Nat. Prod. 45: 83–87

    Google Scholar 

  • Berlin J, Mollenschott C, Herminghaus S & Fecker LF (1998) Lysine decarboxylase transgenic tobacco root cultures biosynthesize novel hydroxycinnamoylcadaverines. Phytochemistry 48: 79–84

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G & Croteau R (1998) Plant terpenoid synthesis: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 95: 4126–4133

    Google Scholar 

  • Bolt AJN & Clarke RE (1970) Cholesterol glucoside in tobacco. Phytochemistry 9: 819–822

    Google Scholar 

  • Botte M, Mabon F, Mouillour ML & Robins RJ (1997) Biosynthesis of nornicotine in root cultures of Nicotiana alata does not involve oxidation at C-5′ of nicotine. Phytochemistry 46: 117–122

    Google Scholar 

  • Bruneton J (1999) Pharmacognosy: Phytochemistry Medicinal Plants (pp 310–353). 2nd edition. Hatton, C.K. (transl.) Lavoisier Publishing, Paris

    Google Scholar 

  • Burden RS, Rowell PM, Bailey JA, Loeffler RST, Kemp MS & Brawn CA (1985) Debneyol, a fungicidal sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 24: 2191–2194

    Google Scholar 

  • Burden RS, Loeffler RST, Rowell PM, Bailey JA & Kemp MS (1986) Cyclodebneyol, a fungitoxic sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 25: 1607–1608

    Google Scholar 

  • Bush LP, Fannin FF, Chelvarajan RL & Burton HR (1993) Biosynthesis and metabolism of nicotine and related alkaloids. In: Garrod JW & Wahren J (eds) Nicotine and Related Alkaloids: Absorbtion, Distribution, Metabolism and Excretion (pp 1–30). Chapman and Hall, London

    Google Scholar 

  • Chang SY & Grunwald C (1976) Duvatrienediol, alkanes and fatty acids in cuticular wax of tobacco leaves of various physiological maturity. Phytochemistry 15: 961–963

    Google Scholar 

  • Chappell J (1995) Update on Metabolism: The biochemistry and molecular biology of isoprenoid metabolism. Plant. Physiol. 107: 1–6

    Google Scholar 

  • Chappell J & Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol. 85: 469–473

    Google Scholar 

  • Chappell J, Nable R, Fleming P, Andersen RA & Burton HR (1987) Accumulation of capsidiol in tobacco cell cultures treated with fungal elicitor. Phytochemistry 26: 2259–2260

    Google Scholar 

  • Chappell J, Lanken CR, Vögeli U & Bhatt P (1989) Sterol and sesquiterpenoid biosynthesis during a growth cycle of tobacco cell suspension cultures. Plant Cell Rep. 8: 48–52

    Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R & Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol. 109: 1337–1343

    Google Scholar 

  • Chung HL & Blume DE (1989) Identification of nicotine biosynthetic intermediates in tobacco roots by chromatography-mass spectrometry. J. Chromatogr. 474: 329–333

    Google Scholar 

  • Cutler HG & Cole RJ (1974) Properties of a plant growth inhibitor extracted from immature tobacco leaves. Plant Cell Physiol. 15: 19–28

    Google Scholar 

  • Cutler HG, Reid WW & Delétang J (1977) Plant growth inhibiting properties of diterpenes from tobacco. Plant Cell Physiol. 18: 711–714

    Google Scholar 

  • Darvill AG & Albersheim P (1984) Phytoalexins and their elicitor. A defense against microbial infection in plants. Ann. Rev. Plant Physiol. 35: 243–275

    Google Scholar 

  • Davis EM & Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topic Current Chem. 209: 54–92

    Google Scholar 

  • Davies HM, Hawkins DJ & Smith LA (1989) Quinoprotein characteristics of N-methylputrescine oxidase from tobacco roots. Phytochemistry 28: 1573–1578

    Google Scholar 

  • Devarenne TP, Shin DY, Back K, Yin S & Chappell J (1998) Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor. Arch. Biochem. Biophys. 349: 205–215

    Google Scholar 

  • De Vetten N, Ter Horst J, Van Schaik H, De Boer A, Mol J & Koes R (1999) A cytochrome b 5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci. USA 96: 778–783

    Google Scholar 

  • Disch A, Hemmerlin A, Bach TJ & Rohmer M (1998) Mevalonatederived isopentenyl diphosphate in the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem. J. 331: 615–621

    Google Scholar 

  • Ersek T & Kiraly Z (1986) Phytoalexins: warding-off compounds in plants. Physiol. Plant. 68: 343–346

    Google Scholar 

  • Faktor O, Kooter JM, Dixon RA & Lamb CJ (1996) Functional dissection of a bean chalcone synthase gene promotor in transgenic tobacco plants reveals sequence motifs essential for floral expression. Plant Mol. Biol. 32: 849–859

    Google Scholar 

  • Fecker LF, Rugenhagen C & Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol. Biol. 23: 11–21

    Google Scholar 

  • Franceschi VR & Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 88: 6748–6749

    Google Scholar 

  • Fuchs A, Slobbe W, Mol PC & Posthumus MA (1983) GC/MS analysis of fungitoxic terpenoids from tobacco. Phytochemistry 22: 1197–1199

    Google Scholar 

  • Fujimori T, Tanaka H & Kato K (1983) Stress compounds in tobacco callus infiltrated by Pseudomonas solanacearum. Phytochemistry 22: 1038

    Google Scholar 

  • Gläßgen WE, Rose A, Madlung J, Koch W, Gleitz J & Seitz HU (1998) Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors. Planta 204: 490–498

    Google Scholar 

  • Gong ZZ, Yamagishi E, Yamazaki M & Saito K (1999) A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frustecens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 41: 33–44

    Google Scholar 

  • Guides MEM, Kuć J, Hammerschmidt R & Bostock R (1982) Accumulation of six sesquiterpenoid phytoalexins in tobacco leaves infiltrated with Pseudomonas lachrymans. Phytochemistry 21: 2987–2988

    Google Scholar 

  • Guo Z & Wagner J (1995) Biosynthesis of labdenediol and sclareol in cell-free extracts from trichomes of Nicotiana glutinosa. Planta 197: 627–632

    Google Scholar 

  • Hammerschmidt R & Kuć J (1979) Isolation and identification of phytuberin from Nicotiana tabacum previously infiltrated with an incompatible bacterium. Phytochemistry 18: 874–875

    Google Scholar 

  • Hanley KM, Vögeli U & Chappel J (1992) A study of the isoprenoid pathway in elicitor-treated tobacco cell suspension cultures. In: Petroski RJ & McCormick SP (eds) Secondary-metabolite Biosynthesis and Metabolism (pp 329–336). Plenum Press, New York

    Google Scholar 

  • Harborne JB & Grayer RE (1988) The anthocyanins. In: Harborne JB (ed) The Flavonoids (pp 7–18). Chapman and Hall Ltd, London

    Google Scholar 

  • Hao DY & Yeoman MM (1996) Mechanism of nicotine N-demethylation in tobacco cell suspension cultures. Phytochemistry 41: 477–482

    Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen. Vol. 6. (pp 411–497) Birkhäuser Verlag, Basel Stuttgart

    Google Scholar 

  • Heller W & Forkmann G (1988) Biosynthesis. In: Harborne JB (ed) The Flavonoids (pp 399–425). Chapman and Hall Ltd, London

    Google Scholar 

  • Hiraoka N (1988) Pyrrolidines, piperidines, and pyridines. In: Cell culture and somatic cell genetic of plants. Vol. 5 (pp 245–258) Academic Press, Inc. Toronto.

    Google Scholar 

  • Howles PA, Sewalt VJH, Paiva NL, Elkind Y, Bate NJ, Lamb C & Dixon RA (1996) Overexpression of L-phenylalanine amonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112: 1617–1624

    Google Scholar 

  • Hrazdina G, Zobel AM & Hoch HC (1987) Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 84: 8966–8970

    Google Scholar 

  • Kandra L & Wagner GJ (1988) Studies of the site and mode of biosynthesis of tobacco trichome exudate components. Arch. Biochem. Biophys. 265: 425–432

    Google Scholar 

  • Keene CK & Wagner J (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79: 1026–1032

    Google Scholar 

  • Knobloch KH & Berlin J (1981) Phosphate mediated regulation of cinnamoyl putrescine biosynthesis in cell suspension culture of Nicotiana tabacum. Planta Med. 42: 167–172

    Google Scholar 

  • Leete E & Chedekel MR (1972) The aberrant formation of (-)-N-methylanabasine from N-methyl-Δ1-piperidinium chloride in Nicotiana tabacum and N. glauca. Phytochemistry 11: 2751–2756

    Google Scholar 

  • Leete E & Slattery SA (1976) Incorporation of [2-14C] and [6-14C] nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and α,β-dipyridyl. J. Am. Chem. Soc. 98: 6326–6331

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 47–65

    Google Scholar 

  • Lloyd AM, Walbot V & Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775

    Google Scholar 

  • Logemann E, Tavernaro A, Schulz W, Somssich IE & Hahlbrock K (2000) UV light selectivity coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proc. Natl. Acad. Sci. USA 97: 1903–1907

    Google Scholar 

  • Mandujano-Cháves M, Schoenbeck MA, Ralston LF, Lozoya-Gloria E & Chappell J (2000) Differntial induction of sesquiterpene metabolism in tobacco cell suspension culture by methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381: 285–294

    Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M & Tamaki E (1971a) Phytochemical studies on tobacco alkaloids XIV. The occurrence and properties of putrescine N-methyltransferase in tobacco roots. Plant Cell Physiol. 12: 633–640

    Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M & Tamaki E (1971b) p-Coumaroylputrescine, caffeoylputrescine and feruloylputrescine from callus tissue culture of Nicotiana tabacum. Phytochemistry 10: 1347–1350

    Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M & Tamaki E (1972) N-methylputrescine oxidase from tobacco roots. Phytochemistry 11: 2757–2762

    Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M & Tamaki E (1973) Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco in the relation to nicotine biosynthesis. Plant Cell Physiol. 14: 103–110

    Google Scholar 

  • Mothes K & Romeike A (1958) Die Alkaloide. In: Ruhland W (ed) Handbuch der Pflanzen-physiologie (p. 1008). Springer-Verlag, Berlin

    Google Scholar 

  • Napier JA, Smith MA, Stobart AK & Shewry PR (1995) Isolation of a cDNA encoding a cytochrome b 5 specifically expressed in developing tobacco seeds. Planta 197: 200–202

    Google Scholar 

  • Nishikawaji S, Fujimori T, Matsushima S & Kato K (1983) Sesquiterpenoids from flue-cured tobacco leaves. Phytochemistry 22: 1819–1820

    Google Scholar 

  • Palazón J, Cusidó RM, Roig C & Piñol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol. Biochem. 35: 155–162

    Google Scholar 

  • Pimm SL, Russell GJ & Gittleman JL (1995) The future of biodiversity. Science 269: 347–350

    Google Scholar 

  • Riechers DE & Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutianary origin of cultivated tobacco. Plant Mol. Biol. 41: 387–401

    Google Scholar 

  • Roberts DL & Rowland RL (1962) Macrocyclic diterpenes. α-and β-4,8,13-duvatriene-1,3-diols from tobacco. J. Org. Chem. 27: 3989–3995

    Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574

    Google Scholar 

  • Rohmer M, Knani M & Simonin P (1993) Isoprenoid biosynthesis in bacteria. A novel pathway for early steps leading to isopentenyl diphosphate. Biochem. J. 295: 517–524

    Google Scholar 

  • Rohmer M, Seemann M & Horbach S (1996) Glyceraldehyde 3-phosphate and pyruvate as precursor of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc. 118: 2564–2566

    Google Scholar 

  • Russel DW (1985) 3-hydroxy-3-methylglutaryl-CoA reductase from pea seedling. In: Methods in Enzymology (pp 26–28). Academic Press. Inc., London

    Google Scholar 

  • Saitoh F, Noma M & Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24: 477–480

    Google Scholar 

  • Samuelsson G (1999) Drugs of Natural origin. A Texbook of Pharmacognosy (pp 122–125). 4th edition. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye M, Tan C, Song Y & Chua N (1995) Expression of the Hevea brasiliensis (H.B.K.) Müll. Arg. 3-hydroxy-3-methylglutaril-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol. 109: 761–770

    Google Scholar 

  • Schmid J, Doerner PW, Clouse SD, Dixon RA & Lamb CJ (1990) Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell 2: 619–631

    Google Scholar 

  • Shimada Y, Nakano-Shimada R, Ohbayashi M, Okinaka Y, Kiyokawa S & Kikuchi Y (1999) Expression of chimeric P450 genes encoding flavonoid-3′,5′-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett. 461: 241–145

    Google Scholar 

  • Siegmund B, Leitner E & Pfannhauser W (1999) Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J. Agric. Food Chem. 47: 3113–3120

    Google Scholar 

  • Snook ME, Chortyk OT, Sisson VA & Costello C (1992) The flower flavanols of Nicotiana species. Phytochemistry 31: 1639–1647

    Google Scholar 

  • Stoessl A, Unwin CH & Ward EWB (1972) Postinfectional inhibitors from plants. Capsidiol, an antifungal compounds from Capsicum frutescens. Phytopath. Z. 74: 141–152

    Google Scholar 

  • Sudan BJ, C Brouillard C, Strehler C, H. Strub H, Strerboul J & Sainte-Laudy J (1984) Determination of nicotine in allergenic extracts of tobacco leaf by high-performance liquid chromatography. J. Chromatogr. 228: 415–422

    Google Scholar 

  • Takahashi M & Yamada Y (1973) Regulation of nicotine production by auxins in tobacco cultured cells in vitro. Agric. Biol. Chem. 37: 1755–1757

    Google Scholar 

  • Tanaka H & Fujimori T (1985) Accumulation of phytuberin and phytuberol in tobacco callus inoculated with Pseudomonas solanacearum or Pseudomonas syringae pv. Tabaci. Phytochemistry 24: 1193–1195

    Google Scholar 

  • Tiburcio AF & Galston AW (1986) Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25: 107–110

    Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R & Galston AW (1987) Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures. Plant Cell Tiss. Org. Cult. 9: 111–120

    Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Ingersoll RB & Galston AW (1985) Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiol.78: 323–326

    Google Scholar 

  • Uegaki R, Fujimori T, Kubo S & Kato K (1981) Sesquiterpenoid stress compounds from Nicotiana species. Phytochemistry 20: 1567–1568

    Google Scholar 

  • Uegaki R, Fujimori T, Kubo S & Kato K (1985) Stress compound from Nicotiana rustica inoculated with TMV. Phytochemistry 24: 2445–2447

    Google Scholar 

  • Uegaki R, Kubo S & Fujimori T (1988) Stress compounds in the leaves of Nicotiana undulata induced by TMV inoculation. Phytochemistry 27: 365–368

    Google Scholar 

  • Verpoorte R (2000) Secondary metabolism. In: Verpoorte R & Alfermann AW (eds) Metabolic Engineering of Plant Secondary Metabolism (pp 1–29). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Verpoorte R, Van der Heijden R, Van Gulik WM & Ten Hoopen HJG (1991) Plant biotechnology for the production of alkaloids: present status and prospects. In: Brossi A (ed) The Alkaloids (pp 1–187). Academic Press Inc, San Diego

    Google Scholar 

  • Vögeli U & Chappell J (1988) Induction of sesquiterpine cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 88: 1291–1296

    Google Scholar 

  • Wahlberg I & Enzell CR (1987) Tobacco isoprenoids. Nat. Prod. Rep. 4: 237–276

    Google Scholar 

  • Walton NJ, Robins RJ & Rhodes MJC (1988) Perturbation of alkaloid production by cadaverine in hairy root cultures of Nicotiana rustica. Plant Sci. 54: 125–131

    Google Scholar 

  • Ward EWB, Unwin CH & Stoessl A (1976) Postinfectional inhibitors from plants. Sesquiterpenoid phytoalexins from fruit capsules of Datura stramonium. Can. J. Bot. 54: 25–29

    Google Scholar 

  • Warfield AH, Galloway WD & Kallianos AG (1972) Some new alkaloids from burley tobacco. Phytochemistry 11: 3371–3375

    Google Scholar 

  • Watanabe R & Wender SH (1965) Flavonoid and certain related compounds in parts of the tobacco flower. Arch. Biochem. Biophys. 112: 111–114

    Google Scholar 

  • Watson DG, Rycroft DS, Freer IM & Brooks CJW (1985) Sesquiterpenoid phytoalexins from suspended callus cultures of Nicotiana tabacum. Phytochemistry 24: 2195–2200

    Google Scholar 

  • Watson AB, Brown AM, Colquhoun IJ & Walton NJ (1990) Biosynthesis of anabasine in transformed root cultures of Nicotiana species. J. Chem. Soc. Perkin Trans. 1: 2607–2610

    Google Scholar 

  • Wellmann E, Hrazdina G & Grisebach H (1976) Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis. Phytochemistry 15: 913–915

    Google Scholar 

  • Whitehead IM, Ewing DF & Threlfall DR (1988) Sesquiterpenoids related to the phytoalexin debneyol from elicited cell suspension cultures of Nicotiana tabacum. Phytochemistry 27: 1365–1370

    Google Scholar 

  • Whitehead IM, Threlfall DR & Ewing DF (1989) 5-epi-aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28: 775–779

    Google Scholar 

  • Wibberley MS, Lenton JR & Neill SJ (1994) Sesquiterpenoid phytoalexins produced by hairy roots of Nicotiana tabacum. Phytochemistry 37: 349–351

    Google Scholar 

  • Wink M (1998) Modes of action of alkaloids. In: Roberts MF & Wink M (eds) Alkaloids: Biochemistry, Ecology, and Medicinal Applications (pp 301–325). Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Verpoorte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugroho, L.H., Verpoorte, R. Secondary metabolism in tobacco. Plant Cell, Tissue and Organ Culture 68, 105–125 (2002). https://doi.org/10.1023/A:1013853909494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013853909494

Navigation