Skip to main content
Log in

Effect of Probenecid on Fluorescein Transport in the Central Nervous System Using In Vitro and In Vivo Models

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to characterize the function of multidrug resistance-associated proteins (MRPs) (or MRP-like organic anion transport systems) in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) using both an in vitro BBB model and an in vivo microdialysis model.

Methods. In vitro functional studies were performed using bovine brain microvessel endothelial cells (BBMEC). The accumulation of fluorescein, an anionic fluorescent dye, in BBMEC was determined with and without the presence of inhibitors of various efflux transport proteins. In vivo microdialysis simultaneously monitored fluorescein concentrations in cortical extracellular fluid and cerebrospinal fluid. The effect of probenecid on the in vivo distribution of fluorescein was studied using a balanced crossover design in the rat.

Results. In vitro experiments showed that probenecid, indomethacin, LY-329146, and all MRP inhibitors significantly increased (two- to threefold) the accumulation of fluorescein in BBMEC, whereas LY-335979, a P-gp inhibitor, had no effect on the accumulation of fluorescein. Probenecid significantly increased fluorescein plasma concentration and the plasma free fraction in vivo. The distribution of fluorescein across the BBB and BCSFB was enhanced by 2.2- and 1.9-fold, respectively, when probenecid was coadministered, even after correction for increased fluorescein plasma concentrations and free fraction.

Conclusions. These results demonstrate that MRPs or MRP-like transport system(s) may play an important role in fluorescein distribution across both BBB and BCSFB. This study showed that microdialysis proved to be a powerful in vivo technique for the study of transport systems in the central nervous system, and in vitro/in vivo correlations are possible using these model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Spector and E. J. Goetzl. Leukotriene C4 transport and metabolism in the central nervous system. J. Neurochem. 46:1308-1312 (1986).

    Google Scholar 

  2. B. M. Emanuelsson, L. Paalzow, and M. Sunzel. Probenecid-induced accumulation of 5-hydroxyindoleacetic acid and homo-vanillic acid in rat brain. J. Pharm Pharmacol. 39:705-710 (1987).

    Google Scholar 

  3. C. S. Kim and J. B. Pritchard. Transport of 2,4,5-trichlorophenoxyacetic acid across the blood-cerebrospinal fluid barrier of the rabbit. J. Pharmcol. Exp. Ther. 267:751-757 (1993).

    Google Scholar 

  4. S. L. Wong, K. van Belle, and R. J. Sawchuk. Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid/cerebrospinal fluid in the rabbit: investigation of the inhibitory effect of probenecid utilizing microdialysis. J. Pharmacol. Exp. Ther. 264:899-909 (1993).

    Google Scholar 

  5. A. Regina, A. Koman, M. Piciotti, B. E. Hafny, M. S. Center, R. Bergmann, P. O. Couraud, and F. Roux. Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71:705-715 (1998).

    Google Scholar 

  6. H. Huai-Yun, D. T. Secrest, S. M. Karen, D. Carney, C. Brandquist, W.F. Elmquist, and D. W. Miller. Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Commun. 243:816-820 (1998).

    Google Scholar 

  7. V. V. Rao, J. L. Dahlheimer, M. E. Bardgett, A. Z. Snyder, R. A. Finch, A. Sartorelli, and D. Piwnica-Worms. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc. Natl. Acad. Sci. USA 96:3900-3905 (1999).

    Google Scholar 

  8. R. H. Angeletti, P. M. Novikoff, S. R. Juvvadi, J. M. Fritschy, P. J. Meier, and A.W. Wolkoff. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc. Natl. Acad. Sci. USA 94:283-286 (1997).

    Google Scholar 

  9. J. I. Nishino, H. Suzuki, D. Sugiyama, T. Kitazawa, K. Ito, M. Hanano, and Y. Sugiyama. Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J. Pharmcol. Exp. Ther. 290:289-294 (1999).

    Google Scholar 

  10. B. Gao, B. Stieger, B. Noe, J. M. Fritschy, and P. J. Meier. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47:1255-1264 (1999).

    Google Scholar 

  11. R. L. Leino, D. Z. Gerhart, and L. R. Drewes. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain. Res. Dev. Brain. Res. 113:47-54 (1999).

    Google Scholar 

  12. M. Kool, M. de Haas, G. L. Scheffer, R. J. Sheper, M. J. T. van Eijk, J. A. Juijn, F. Baas, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57:3537-3547 (1997).

    Google Scholar 

  13. P. Borst, R. Evers, M. Kool, and J. Wijnholds. The multidrug resistance protein family. Biochim. Biophys. Acta. 1461:347-357 (1999).

    Google Scholar 

  14. M. A. McAleer, M. A. Breen, N. L. White, and N. Mattews. pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but dose not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. J. Biol. Chem. 274:23541-23548 (1999).

    Google Scholar 

  15. Y. Zhang, H. Han, W. F. Elmquist, and D. W. Miller. Expression of multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res. 876:148-153 (2000).

    Google Scholar 

  16. H. Suzuki. Analysis of xenobiotic detoxification system mediated by efflux transporters. Yakugaku Zasshi 119:822-834 (1999).

    Google Scholar 

  17. H. Gutmann, M. Torok, G. Fricker, J. Huwyler, C. Beglinger, and J. Drewe. Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro. Drug Metab. Dispos. 27:937-941 (1999).

    Google Scholar 

  18. B. El Hafny, O. Chappey, M. Piciotti, M. Debray, B. Boval, and F. Roux. Modulation of P-glycoprotein activity by glial factors and retinoic acid in an immortalized rat brain microvessel endothelial cell line. Neurosci. Lett. 236:107-111 (1997).

    Google Scholar 

  19. W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies. Pharm. Res. 14:267-288 (1997).

    Google Scholar 

  20. J. H. Hooijberg, H. J. Broxterman, M. Kool, Y. G. Assaraf, G. J. Peters, P. Noordhuis, R. J. Scheper, P. Borst, H. M. Pinedo, and G. Jansen. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 59:2532-2535 (1999).

    Google Scholar 

  21. D. W. Miller, K. L. Audus, and R. T. Borchardt. Application of cultured endothelial cells of the brain mirovasculature in the study of the blood-brain barrier. J. Tissue Cult. Meth. 14:217-224 (1992).

    Google Scholar 

  22. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randal. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-275 (1951).

    Google Scholar 

  23. H. Yang, Q. Wang, and W. F. Elmquist. Fluconazole distribution to the brain: a crossover study in freely-moving rats using in vivo microdialysis. Pharm. Res. 13:1570-1575 (1996).

    Google Scholar 

  24. Y. Wang, S. L. Wong, and R. J. Sawchuk. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm. Res. 10:1411-1419 (1993).

    Google Scholar 

  25. R. E. Galinsky, K. K. Flaharty, B. L. Hoesterey, and B. D. Anderson. Probenecid enhances central nervous system uptake of 2′,3′-dideoxyinosine by inhibiting cerebrospinal fluid efflux. J. Pharmcol. Exp. Ther. 257:972-978 (1991).

    Google Scholar 

  26. A.H. Dantzig, R.L. Shepard, K.L. Law, L. Tabas, S. Pratt, J.S. Gillespie, S.N. Binkley, M.T. Kuhfeld, J.J. Starling, and S.A. Wrighton. Selectivity of the multidrug resistance modulator, LY335979, for p-glycoprotein and effect on cyctochrome P-450 activities. J. Pharmcol. Exp. Ther. 290:854-862 (1999).

    Google Scholar 

  27. B. H. Norman, A. H. Dantzig, K. L. Hauser, J. S. Kroin, K. L. Law, A. D. Palkowitz, R. L. Shepard, J. P. Sluka, J. J. Starling, L. L. Tabas, and M. A. Winter. Novel inhibitors of the multidrug resistance-associated protein (MRP). Annu. Meet. Am. Assoc. Cancer Res. (1997).

  28. M. P. Draper, R. L. Martell, and S. B. Levy. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressed MRP, but not P-glycoprotein. Br. J. Cancer. 75:810-815 (1997).

    Google Scholar 

  29. H. Sun, P. Bungay, and W. F. Elmquist. The influence of capillary efflux inhibition on microdialysis probe recovery. J. Pharmacol. Exp. Therap. 297:991-1000 (2001).

    Google Scholar 

  30. I. Leier, G. Jedlitschky, U. Buchholz, S. P. Cole, R. G. Deeley, and D. Keppler. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269:27807-27810 (1994).

    Google Scholar 

  31. H. Sun, D. R. Johnson, R. A. Finch, A. C. Sartorelli, D. W. Miller, and W. F. Elmquist. Transport of fluorescein in MDCKII-MRP1 transfected cells and mrp1-knockout mice. Biochem. Biophys. Res. Commun. 284:863-869 (2001).

    Google Scholar 

  32. B. M. Emanuelsson and L. Paalzow. Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm. Drug Disposit. 9:59-70 (1988).

    Google Scholar 

  33. J. Wijnholds, E. C. M. de Lange, G. L. Scheffer, D. J. van den Berg, C. A. A. M. Mol, M. van der Valk, A. H. Schinkel, R. J. Scheper, D. D. Breimer, and P. Borst. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J. Clin. Invest. 105:279-285 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Miller, D.W. & Elmquist, W.F. Effect of Probenecid on Fluorescein Transport in the Central Nervous System Using In Vitro and In Vivo Models. Pharm Res 18, 1542–1549 (2001). https://doi.org/10.1023/A:1013074229576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013074229576

Navigation