Skip to main content
Log in

Biosynthesis of anthraquinones in cell cultures of the Rubiaceae

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Plants and their derived cell and tissue cultures in the family Rubiaceae accumulate a number of anthraquinones. There are two main biosynthetic pathways leading to anthraquinones in higher plants: the polyketide pathway and the chorismate/o-succinylbenzoic acid pathway. The latter occurs in the Rubiaceae for the biosynthesis of Rubia type anthraquinones. In this pathway, ring A and B of the Rubia type anthraquinones are derived from shikimic acid, α-ketoglutarate via o-succinylbenzoate, whereas ring C is derived from isopentenyl diphosphate, a universal building block for all isoprenoids. At present, it is known that isopentenyl diphosphate is formed via the mevalonic acid pathway or the 2-C-methyl-D-erythritol 4-phosphate pathway. Recent findings demonstrate that the 2-C-methyl-D-erythritol 4-phosphate pathway, not the mevalonic acid pathway, is involved in the formation of isopentenyl diphosphate, which constitutes ring C of anthraquinones in the Rubiaceae. This review summarizes the latest results of studies on the biosynthetic pathways, the enzymology and regulation of anthraquinone biosynthesis, as well as aspects of the metabolic engineering. Furthermore, biochemical and molecular approaches in functional genomics, which facilitate elucidation of anthraquinone biosynthetic pathways, are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah MA, Ali AM, Marziah M, Lajis NH & Ariff AB (1998) Establishment of cell suspension cultures of Morinda elliptica for the production of anthraquinones. Plant Cell Tiss. Org. Cult. 54: 173–182

    Google Scholar 

  • Aharoni A, Keizer LC, B ouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, Houwelingen MML, Vos RCHD, Van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, Van Tunen AJ & O'Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12: 647–662

    Google Scholar 

  • Albrecht M, Misawa N & Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids â-carotene and zeaxanthin. Biotech. Lett. 21: 791–795

    Google Scholar 

  • Altincicek B, Hintz M, Sanderbrand S, Wiesner J, Beck E & Jomaa H (2000) Tools for discovery of inhibitors of the 1–deoxy-xylulose 5–phosphate (DOXP) synthase and DOXP reductoisomerase: An approach with enzymes from the pathogenic bacterium Pseudomonas aeruginosa. FEMS Microbiol. Lett. 190: 329–333

    Google Scholar 

  • Amrhein N, Deus B, Gehrke P & Steinrücken HC (1980) The site of the inhibition of the shikimate pathway by glyphosphate. Plant Physiol. 66: 830–834

    Google Scholar 

  • Angelini LG, Pistelli L, Belloni P, Bertoli A & Panconesi S (1997) Rubia tinctorum a source of natural dyes: Agronomic evaluation, quantitative analysis of alizarin and industrial assays. Ind. Crops Prod. 6: 303–311

    Google Scholar 

  • Bach TJ, Boronat A, Campos N, F errer A & Vollack KU (1999) Mevalonate biosynthesis in plants. Crit. Rev. Biochem. Mol. Biol. 34: 107–122

    Google Scholar 

  • Bassetti L, Pijnenburg J & Tramper J (1996) Silicone-stimulated anthraquinone production and release by Morinda citrifolia in a two-liquid-phase system. Biotechnol. Lett. 18: 377–382

    Google Scholar 

  • Banthorpe DV & White JJ (1995) Novel anthraquinones from undifferentiated cell cultures of Galium verum. Phytochemistry 38: 107–111

    Google Scholar 

  • Bauch HJ & Leistner E (1978) Aromatic metabolites in cell suspension cultures of Galium mollugo. Planta Med. 33: 105–123

    Google Scholar 

  • Bernard JR (1999) Biosynthesis of polyketides (other than actinomycete macrolides). Nat. Prod. Rep. 16: 425–484

    Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV & Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Barton D & Nakanishi K (eds) Comprehensive Natural Products Chemistry, Vol 2 (pp 15–44). Pergamon, Oxford

    Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189–214

    Google Scholar 

  • Bouvier F, d'Harlingue A, Suire C, Backhaus RA & Camara B (1998) Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117: 1423–1431

    Google Scholar 

  • Burnett AR & Thomson RH (1968) Naturally occurring quinones. Part XV. Biogenesis of the anthraquinones in Rubia tinctorum L. (Madder). J. Chem. Soc. C. 2437–2441

  • Canel C (1999) From genes to phytochemicals: the genomics approach to the characterization and utilization of plant secondary metabolism. Acta Hortic. 51–57

  • Carpin S, Quelhazi L, Filali M, Chénieux JC, Rideau M & Hamdi S (1997) The relationship between the accumulation of a 28 kD polypeptide and that of indole alkaloids in Catharanthus roseus cell suspension cultures. J. Plant Physiol. 150: 452–457

    Google Scholar 

  • Chahed L, Oudin A, Guivarc'h N, Hamdi S, Chénieux J, Rideau M & Clastre M (2000) 1–deoxy-D-xylulose 5–phosphate synthase from periwinke: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol. Biochem. 38: 559–566

    Google Scholar 

  • Chang P & Chen C (1995) Isolation and characterization of antitumor anthraquinones from Morinda umbellata. Chin. Pharm. J. (Taipei) 47: 347–353

    Google Scholar 

  • Christiane LP, Heike D & Dietrich K (1995) Bioreactors for plant cell cultures. BioTec 7: 28–32

    Google Scholar 

  • DeRisi JL, Iyer VR & Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686

    Google Scholar 

  • Do QV, Pharm GD, Mai NT, Phan TPP, Nguyen HN, Jea YY & Ahn BZ (1999) Cytotoxicity of some anthraquinones from the stem of Morinda citrifolia growing in Vietnam. Tap Chi Hoa Hoc 37: 94–97

    Google Scholar 

  • Eichinger D, Bacher A, Zenk MH & Eisenreich W (1999) Quantitative assesment of metabolic flux by 13C NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. J. Am. Chem. Soc. 121: 7469–7475

    Google Scholar 

  • Eisenreich W, Rohdich F & Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 78–84

    Google Scholar 

  • El-Emary NA & Backheet EY (1998) Three hydroxymethylanthraquinone glycosides from Rubia tinctorum. Phytochemistry 49: 277–279

    Google Scholar 

  • El-Gamal AA, Takeya K, Itokawa H, Halim AF, Amer MM, Saad HA & Awad SA (1995) Anthraquinones from Galium sinaicum. Phytochemistry 40: 245–251

    Google Scholar 

  • El-Gamal AA, Takeya K, Itokawa H, Halim AF, Amer MM, Saad HA & Awad SA (1996) Anthraquinones from the polar fractions of Galium sinaicum. Phytochemistry 42: 1149–1155

    Google Scholar 

  • El-Shagi H, Schulte U & Zenk MH (1984) Specific inhibition of anthraquinone formation by amino compounds in Morinda cell cultures. Naturwissenschaften 71: 267

    Google Scholar 

  • Emili AQ & Cagney G (2000) Large-scale functional analysis using peptide or protein arrays. Nat. Biotechnol. 18: 393–397

    Google Scholar 

  • Endo M, Sakata K & Katayama A (1997) The pigments in the callus of Rubia akane and their dyeing properties. Nippon Sanshigaku Zasshi 66: 107–112

    Google Scholar 

  • Ferrari F, Monache GD & Lima RA (1985) Two naphthopyran derivatives from Faramea cyanea. Phytochemistry 24: 2753–2755

    Google Scholar 

  • Goese M, Kammhuber K, Bacher A, Zenk MH & Eisenreich W (1999) Biosynthesis of bitter acids in hops. A 13C-NMR and 2H-NMR study on the building blocks of humulone. Eur. J. Biochem. 263: 447–454

    Google Scholar 

  • Graves DJ (1999) Powerful tools for genetic analysis come of age. Trends Biotechnol. 17: 127–134

    Google Scholar 

  • Grolle S, Bringer-Meyer S & Sahm H (2000) Isolation of the dxr gene of Zymomonas mobilis and characterization of the 1–deoxy-d-xylulose 5–phosphate reductoisomerase. FEMS Mi-crobiol. Lett. 191: 131–137 216

    Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM & Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389–2393

    Google Scholar 

  • Hagendoorn MJM, Jamar DCL, Meykamp B & Van der Plas LHW (1997) Cell division versus secondary metabolite production in Morinda citrifolia cell suspensions. J. Plant Physiol. 150: 325–330

    Google Scholar 

  • Hahn FM, Eubanks LM, Testa CA, Blagg BSJ, Baker JA & Poulter CD (2001) 1–deoxy-D-xylulose 5–phosphate synthase, the gene product of open reading frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus. J. Bacteriol. 183: 1–11

    Google Scholar 

  • Halim AF, El-Fattah HA, El-Gamal AA & Thomson RH (1992) Anthraquinones from Galium sinaicum. Phytochemistry 31: 355–356

    Google Scholar 

  • Hamzah AS, Jasmani H, Ahmad R & Baba AR (1997) New anthraquinones from the roots of Hedyotis dichotoma. J. Nat. Prod. 60: 36–37

    Google Scholar 

  • Han YS, Van der Heijden R, Lefeber AWM, Erkelens C & Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of Cinchona 'Robusta' proceeds via the methylerythritol 4–phosphate pathway. Phytochemistry (accepted).

  • Harkes PAA, Krijbolder L, Libbenga KR, Wijnsma R, Aremge TN & Verpoorte R (1985) Influence of various media constituents on growth of Cinchona ledgeriana tissue cultures and the production of alkaloids and anthraquinones therein. Plant Cell Tiss. Org. Cult. 4: 199–214

    Google Scholar 

  • Harker M & Bramley PM (1999) Expression of prokaryotic 1–deoxy-D-xylulose 5–phosphatases in E. coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448: 115–119

    Google Scholar 

  • Heide L, Kolkmann R, Arendt S & Leistner E (1982) Enzymatic synthesis of o-succinylbenzoyl-CoA in cell-free extracts of AQ producing Galium mollugo L. cell suspension cultures. Plant Cell Rep. 1: 180–182

    Google Scholar 

  • Heike H, Heike D & Dietrich K (1996) Biosynthesis and accumulation of anthraquinones in Galium verum. Immobilized cells. Immobilization and two-phase culturing of plant cell cultures. BioTec. 8: 42, 47–49

    Google Scholar 

  • Herrmann, Klaus M, Weaver & Lisa M (1999) The shikimate pathway. Annu. Rev. Plant Physiol. PlantMol. Biol. 50: 473–503

    Google Scholar 

  • Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH & Bacher A (2000) Biosynthesis of terpenoids: YgbB protein converts 4–diphosphocytidyl-2C-methyl-D-erythri tol 2–phosphate to 2Cmethyl-D-erythritol 2,4–cyclodiphosphate. Proc. Natl. Acad. Sci. USA 97: 2486–2490

    Google Scholar 

  • Ho TI, Chen GP, Lin YC, Lin YM & Chen FC (1986) An anthraquinone from Hedyotis diffusa. Phytochemistry 25: 1988–1989

    Google Scholar 

  • Hrazdina G (1994) Compartmentation in phenolic metabolism. Acta Hort. 381: 86–96

    Google Scholar 

  • Hutchinson CR & Colombo AL (1999) Genetic engineering of doxorubicin production in Streptomyces peucetius: A review. J. Ind. Microbiol. Biotechnol. 23: 647–652

    Google Scholar 

  • Igbavboa U, Sieweke HJ, Leistner E, Röwer I, Hüsemann W & Barz W (1985) Alternative formation of anthraquinones and lipoquinones in heterotrophic and photoautotrophic cell suspension cultures of Morinda lucida Benth. Planta 166: 537–544

    Google Scholar 

  • Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G & Zenk MH (1979) Site of prenylation in anthraquinone biosynthesis in cell cultures of Galium mollugo. J. Chem. Soc., Chem. Comm. 957–959

  • Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G & Zenk MH (1984) Biosynthesis of anthraquinones and related compounds in Galium mollugo cell suspension cultures. Phytochemistry 23: 307–311

    Google Scholar 

  • Inouye H & Leistner E (1988) Biosynthesis of quinones. In: Patai S & Rappoport Z (eds) The Chemistry Of Quinonoid Compounds, Vol II (pp 1293–1349). John Wiley & Sons Ltd., New York

    Google Scholar 

  • Ismail NH, Ali AM, Aimi N, Kitajima M, Takayama H & Lajia NH (1997) Anthraquinone from Morinda elliptica. Phytochemistry 45: 1723–1725

    Google Scholar 

  • Itokawa H, Qiao Y & Takeya K (1989) Anthraquinones and naphthohydroquinones from Rubia cordifolia. Phytochemistry 28: 3465–3468

    Google Scholar 

  • Itokawa H, Qiao Y & Takeya K (1991) Anthraquinones, naphthoquinones and naphthohydroquinones from Rubia oncotricha. Phytochemistry 30: 637–640

    Google Scholar 

  • Jacobs DI, Van der Heijden R & Verpoorte R (2000) Proteomics in plant biotechnology and secondary metabolism research. Phytochem. Anal. 11: 277–287

    Google Scholar 

  • Jasril, Lajis NH, Abdullah MA, Ismail NH, Ali AM, Marziah M, Ariff AB, Kitajima M, Takayama H & Aimi N (2000) Anthraquinones from cell suspension culture of Morinda elliptica. Nat. Prod. Sci. 6: 40–43

    Google Scholar 

  • Kawasaki Y, Goda Y & Yoshihira K (1992) The mutagenic constituents of Rubia tinctorum. Chem. Pharm. Bull. 40: 1504–1509

    Google Scholar 

  • Khouri H, Ibrahim RK & Rideau M (1986) Effects of nutritional and hormonal factors on growth and production of anthraquinone glucosides in cell suspension cultures of Cinchona succirubra. Plant Cell Rep. 5: 423–426

    Google Scholar 

  • Khouri H, Ibrahim RK & Rideau M (1987) Purification and some properties of five anthraquinone-specific glucosyltransferases from Cinchona succirubra cell suspension culture. Phytochemistry 26: 2531–2535

    Google Scholar 

  • Kitajima M, Fischer U, Nakamura M, Ohsawa M, Ueno M, Takayama H, Unger M, Stöckigt J & Aimi N (1998) Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry 48:107–111

    Google Scholar 

  • Knaggs AR (1999) The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 16: 525–560

    Google Scholar 

  • Koblitz H (1988) Anthraquinones. In: Vasil I (ed) Cell Culture And Somatic Cell Genetics Of Plants, Vol 1 (pp 113–139). Academic Press, Orlando

    Google Scholar 

  • Koumaglo K, Gbeassor M, N ikabu O, Souza CD & Werner W (1992) Effects of three compounds extracted from Morinda lucida on Plasmodium falciparum. Planta Med. 58: 533–534

    Google Scholar 

  • Koyama J, Okatani T, Tagahara K, Kouno I & Irie H (1992) Anthraquinones of Damnacanthus indicus. Phytochemistry 31: 709–710

    Google Scholar 

  • Koyama J, Ogura T & Tagahara K (1993) Anthraquinones of Galium spurium. Phytochemistry 33: 1540–1542

    Google Scholar 

  • Kuo SC, Chen PR, Lee SW & Chen ZT (1995) Constituents of Rubiaceous plants in Taiwan. Part 2. Constituents of roots of Rubia lanceolata hayata. J. Chin. Chem. Soc. (Taipei) 42: 869–871

    Google Scholar 

  • Kuzovkina IN, Mantrova OV, Al'terman IE & Yakimov SA (1999) Culture of genetically transformed hairy roots derived from anthraquinone-producing European madder plants. Russ. J. Plant Physiol. 46: 248–251

    Google Scholar 

  • Kuzuyama T, Takagi M, Takahashi S & Seto H (2000a) Cloning and characterization of 1–deoxy-D-xylulose 5–phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182: 891–897

    Google Scholar 

  • Kuzuyama T, Takahashi S, Takagi M, Kaneda K & Seto H (2000b) Characterization of 1–deoxy-D-xylulose 5–phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis, and identification of its catalytic amino acid resides. J. Biol. Chem. 275: 19928–19932

    Google Scholar 

  • Kuzuyama T, Takagi M, Kaneda K, Dairi T & Seto H (2000c) Formation of 4–(cytidine 5'-diphospho)-2–C-methyl-erythritol from 2–C-methyl-erythritol 4–phosphate by 2–C-methyl-erythritol 4–phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Lett. 41: 703–706

    Google Scholar 

  • Lange BM, Severin K, Bechthold A & Heide L (1998a) Regulatory role of microsomal 3–hydroxy-3–methylglutaryl-coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta 204: 234–241

    Google Scholar 

  • Lange BM, Wildung MR, McCaskill D & Croteau R (1998b) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95: 2100–2104

    Google Scholar 

  • Lange BM & Croteau R (1999a) Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc. Natl. Acad. Sci. USA 96: 13714–13719

    Google Scholar 

  • Lange BM & Croteau R (1999b) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1–deoxy-D-xylulose-5–phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. 365: 170–174

    Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D & Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA 97: 2934–2939

    Google Scholar 

  • Ledüc C, Ruhnau P & Leistner E (1991) Isochorismate hydroxymutase from Rubiaceae cell suspension cultures. Plant Cell Rep. 10: 334–337

    Google Scholar 

  • Ledüc C, Birgel I, Müler R & Leistner E (1997) Isochorismate hydroxymutase from cell-suspension culture of Galium mollugo L. Planta 202: 206–210

    Google Scholar 

  • Leistner E (1971) A second pathway leading to anthraquinones in higher plants. Phytochemistry 10: 3015–3020

    Google Scholar 

  • Leistner E (1973a) Biosynthesis of morindone and alizarin in intact plants and cell suspension cultures of Morinda citrifolia. Phytochemistry 12: 1669–1674

    Google Scholar 

  • Leistner E (1973b) Mode of incorporation of precursors into alizarin (1,2–dihydroxy-9,10–anthraquinone). Phytochemistry 12: 337–345

    Google Scholar 

  • Leistner E (1975) Isolation, identification and biosynthesis of anthraquinones in cell suspension cultures of Morinda citrifolia. Planta Med. Suppl. 214–224

  • Leistner E (1981) Biosynthesis of Plant Quinones. In: Conn EE (ed) The Biochemistry Of Plants, Vol 7 (pp 403–423). Academic Press, London

    Google Scholar 

  • Leistner E (1985) Biosynthesis of chorismate-derived quinones in plant cell cultures. In: Neumann KH, Barz W & Reinhard E (eds) Primary and Secondary Metabolism of Plant Cell Cultures (pp 215–224). Springer-Verlag, Berlin, New York

    Google Scholar 

  • Leistner E (1995) XVI Morinda species: Biosynthesis of quinones in cell cultures. In: YPS Bajaj (ed) Biotechnology In Agriculture And Forestry, Medicinal And Aromatic Plants VIII Vol. 33 (pp 296–307). Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Leistner E & Zenk MH (1967) Incorporation of shikimic acid into 1,2–dihydroxy-anthraquinone (alizarin) by Rubia tinctorum L. Tetrahedron Lett. 475–476

  • Leistner E & Zenk MH (1968) Mevalonic acid a precursor of the substituted benzenoid ring of Rubiaceae anthraquinones. Tetrahedron Lett. 1395–1396

  • Lichtenthaler HK (1999) The 1–deoxy-D-xylulose-5–phosphate pathway of isoprenoids biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 47–65

    Google Scholar 

  • Likhitwitayawuid K, Dej-adisai S, Jongbunprasert V & Krungkrai J (1999) Antimalarials from Stephania venosa, Prismatomeris sessiliflora, Diospyros montana and Murraya siamensis. Planta Med. 65: 754–756

    Google Scholar 

  • Liu YL, Chen BZ, Bai YL, Duddeck H & Hiegemann M (1991) Digiferruginol glycoside from the roots of Rubia schumanniana. Phytochemistry 30: 947–949

    Google Scholar 

  • Lodhi AH & Charlwood BV (1996) Agrobacterium rhizogenesmediated transformation of Rubia peregrina L: In vitro accumulation of anthraquinones. Plant Cell Tiss. Org. Cult. 46: 103–108

    Google Scholar 

  • Lodhi AH, Bongaerts RJM, V erpoorte R, Coomber SA & Charlwood BV (1996) Expression of bacterial isochorismate synthase (EC 5.4.99.6) in transgenic root cultures of Rubia peregrina. Plant Cell Rep. 16: 54–57

    Google Scholar 

  • Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M & Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of 1–deoxy-D-xylulose 5–phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 95: 2105–2110

    Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N & Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1–D-deoxyxylulose 5–phosphate synthase. Plant J 22: 503–513

    Google Scholar 

  • Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, F ischer M, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A & Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2–hydroxy group of 4–diphosphocytidyl-2–C-methyl-D-erythritol. Proc. Natl. Acad. Sci. USA 97: 1062–1067

    Google Scholar 

  • MacBeath G & Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763

    Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Ro cha-Sosa M & León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9: 649–658

    Google Scholar 

  • Mantrova OV, Dunaeva MV, Kuzovkina IN, Schneider B & Müller-Uri F (1999) Effect of methyl jasmonate on anthraquinone biosynthesis in transformed madder roots. Russ. J. Plant Physiol. 46: 276–279

    Google Scholar 

  • Masahiro K, Koji M, Masahito T, Setsuji T & Takahito I (1994) Production and release of anthraquinones pigments by hairy roots of madder. J. Ferment. Bioeng. 77: 103–106

    Google Scholar 

  • Matthews PD & Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in E. coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396–400

    Google Scholar 

  • Miller B, Heuser T & Zimmer W (1999) A Synechococcus leopoliensis SAUG 1402–1 operon harboring the 1–deoxyxylulose 5–phosphate synthase gene and two additional open reading frames is functionally involved in the dimethylallyl diphosphate synthesis. FEBS Lett. 460: 485–490

    Google Scholar 

  • Miller B, Heuser T & Zimmer W (2000) Functional involvement of a deoxy-D-xylulose 5–phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis. FEBS Lett. 481: 221–226

    Google Scholar 

  • Mischenko NP, Fedoreyev SA, Glazunov VP, Chernoded GK, Bulgakov VP & Zhuravlev YN (1999) Anthraquinone production by callus cultures of Rubia cordifolia. Fitoterapia 70: 552–557

    Google Scholar 

  • Mizutani H, Hashimoto O, Nakashima R & Nagai J (1997) Anthraquinone production by cell suspension cultures of Rubia akane NAKAI. Biosci. Biotech. Biochem. 61: 1743–1744 218

    Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E & Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA 90: 7490–7494

    Google Scholar 

  • Muzychkina RA (1998) Natural Anthraquinones: Biological and Physicochemical Properties. PHASIS, Moscow

    Google Scholar 

  • Okuyama E, Sato K & Yoshihira K (1990) 2–ethoxycarbonyl-1–hydroxyanthraquinone from Rubia akane. Phytochemistry 29: 3973–3974

    Google Scholar 

  • Permana D, Lajis NH, Othman AG, Ali AM, Aimi N, Kitajima M & Takayama H (1999) Anthraquinones from Hedyotis herbacea. J. Nat. Prod. 62: 1430–1431

    Google Scholar 

  • Poulsen C & Verpoorte R (1991) Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 30: 377–386

    Google Scholar 

  • Poulton JE (1981) Transmethylation and demethylation reactions in the metabolism of secondary plant products. In: Conn EE (ed) The Biochemistry of Plants, Vol 7 (pp 667–723). Academic Press, London

    Google Scholar 

  • Ramos-Valdivia AC, Van der Heijden R & Verpoorte R (1997a) Isopentenyl diphosphate isomerase: A core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat. Prod. Rep. 591–603

  • Ramos-Valdivia AC, Van der Heijden R & Verpoorte R (1997b) Purification and characterization of two isoforms of isopentenyldiphosphate isomerase from elicitor-treated Cinchona robusta cells. Eur. J. Biochem. 249: 161–170

    Google Scholar 

  • Ramos-Valdivia AC, Van der Heijden R & Verpoorte R (1997c) Elicitor-mediated induction of anthraquinone biosynthesis and regulation of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase activities in cell suspension cultures of Cinchona robusta. Planta 203: 155–161

    Google Scholar 

  • Ramos-Valdivia AC, Van der Heijden R & Verpoorte R (1998) Isopentenyl diphosphate isomerase and prenyltransferase activities in Rubiaceous and Apocynaceous cultures. Phytochemistry 48: 961–969

    Google Scholar 

  • Rath G, Ndonzao M & Hostettmann K (1995) Antifungal anthraquinones from Morinda lucida. Int. J. Pharmacogn. 33: 107–114

    Google Scholar 

  • Reymond P & Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411

    Google Scholar 

  • Robins RJ, Payne J & Rhodes MJC (1986) The production of anthraquinones by cell suspension cultures of Cinchona ledgeriana. Phytochemistry 25: 2327–2334

    Google Scholar 

  • Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A & Zenk MH (1999) Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4–diphosphocytidyl-2–C-methylerythrito l. Proc. Natl. Acad. Sci. USA 96: 11758–11763

    Google Scholar 

  • Rohdich F, Wungsintaweekul J, Lüttgen H, Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH & Bacher A (2000a) Biosynthesis of terpenoids: 4–diphosphocytidyl-2–Cmethyl-D-erythritol kinase from tomato. Proc. Natl. Acad. Sci. USA 97: 8251–8256

    Google Scholar 

  • Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH & Bacher A (2000b) Biosynthesis of terpenoids: 4–diphosphocytidyl-2–C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 6451–6456

    Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B & Sahm H (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for early steps leading to isopentenyl diphosphate. Biochem. J 295: 517–524

    Google Scholar 

  • Rohmer M(1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574

    Google Scholar 

  • Sato K, Yamazaki T, Okuyama E, Yoshihira K & Shimomura K (1991) Anthraquinones production by transformed root cultures of Rubia tinctorum: Influence of phytohormones and sucrose concentration. Phytochemistry 30: 1507–1509

    Google Scholar 

  • Sato K, Kubota H, Goda Y, Yamada T & Maitani T (1997) Glutathione enhanced anthraquinone production in adventitious root cultures of Rubia tinctorum. Plant Biotechnol. (Tokyo) 14: 63–66

    Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT, Song YH & Chua NH (1995) Expression of the Hevea brasiliensis (H.B.K.) Müll. Arg. 3–hydroxy-3–methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol. 109: 761–770

    Google Scholar 

  • Schena M, Shalon D, Davis RW & Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Google Scholar 

  • Schripsema J, Ramos-Valdivia AC & Verpoorte R (1999) Robustaquinones, novel anthraquinones from an elicited Cinchona robusta suspension culture. Phytochemistry 51: 55–60

    Google Scholar 

  • Schulte U, El-Shagi H & Zenk MH (1984) Optimization of 19 Rubiaceae species in cell suspension cultures of Cinchona ledgeriana. Plant Cell Rep. 3: 51–54

    Google Scholar 

  • Schwender J, Müller C, Zeidler J & Lichtenthaler HK (1999) Cloning and heterologous expression of a cDNA encoding 1–deoxy-D-xylulose-5–phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 455: 140–144

    Google Scholar 

  • Shim JJ, Shin JH, Pai T, Chung IS & Lee HJ (1999) Permeabilization of elicited suspension culture of madder (Rubia akane Nakai) cells for release of anthraquinones. Biotechnol. Tech. 13: 249–252

    Google Scholar 

  • Shin S & Kim Y (1996) Production of anthraquinone derivatives by hairy roots of Rubia cordifolia var. pratensis. Saengyak Hakhoechi 27: 301–308

    Google Scholar 

  • Sieweke H & Leistner E (1992) O-succinylbenzoate: Coenzyme A ligase from anthraquinone producing cell suspension cultures of Galium mollugo. Phytochemistry 31: 2329–2335

    Google Scholar 

  • Simantiras M & Leistner E (1989) Formation of o-succinylbenzoic acid from iso-chorismic acid in protein extracts from anthraquinone-producing plant cell suspension cultures. Phytochemistry 28: 1381–1382

    Google Scholar 

  • Simantiras M & Leistner E (1991) Cell free synthesis of o-succinylbenzoic acid in protein extracts from anthraquinone and phylloquinone (vitamin K1) producing plant cell suspension cultures. Occurrence of intermediates between isochorismic acid and o-succinylbenzoic acid. Z. Naturforsch. 46c 364–370

    Google Scholar 

  • Simantiras M & Leistner E (1992) O-succinylbenzoate:coenzyme A ligase from anthraquinone producing cell suspension cultures of Galium mollugo. Phytochemistry 31: 2329–2335

    Google Scholar 

  • Simpson TJ (1987) The biosynthesis of polyketides. Nat. Prod. Rep. 4: 339–376

    Google Scholar 

  • Sittie AA, Lemmich E, Olsen CE, Hviid L, Kharazmi A, Nkrumah FK & Christensen SB (1999) Structure-activity studies: In vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida. Planta Med. 65: 259–261

    Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81

    Google Scholar 

  • Sprenger GA, Schörken U, Wiegert T, Grolle S, DeGraaf AA, Taylor SV, Begley TP, B ringer-Meyer S & Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1–deoxy-D-xylulose 5–phosphate precursor to isoprenoids, thiamin and pyridoxol. Proc. Natl. Acad. Sci. USA 94: 12859–12862

    Google Scholar 

  • Srivasta M & Singh J (1993) A new anthraquinone glycoside from Morinda citrifolia. Int. J. Pharmacog. 31: 182–184

    Google Scholar 

  • Stalman M (2001) Metabolic regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia. Ph.D Thesis (pp 53–72). Univ. of Nijmegen, The Netherlands

    Google Scholar 

  • Stara D, Suchy V & Blanarik P (1995) Tissue culture of Rubia tinctorum and production of anthraquinones. Cesk. Slov. Farm. 44: 167–1695

    Google Scholar 

  • Stermer BA, Bianchini GM & Korth KL (1994) Regulation of HMG-CoA reductase activity in plants: Review. J. Lip. Res. 35: 1133–1140

    Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM & Harborne JB (eds) Plant Biochemistry (pp 387–416). Academic Press, Inc., San Diego

    Google Scholar 

  • Sundberg SA (2000) High-throughput and ultra-high-throughput screening: Solution-and cell-based approaches. Curr. Opin. Biotechnol. 11: 47–53

    Google Scholar 

  • Suzuki H, Matsumoto T & Mikami Y (1984) Effects of nutritional factors on the formation of anthraquinone by Rubia cordifolia plant cells in suspension culture. Agric. Biol. Chem. 48: 603–610

    Google Scholar 

  • Suzuki H, Matsumoto T & Mikami Y (1985) Effects of physical factors and surface active agents on the formation of anthraquinone by Rubia cordifolia cells in suspension culture. Agric. Biol. Chem. 48: 519–520

    Google Scholar 

  • Suzuki H & Matsumoto T (1988) Anthraquinone: production by plant cell culture. In: Bajaj YPS (ed) Biotechnology In Agriculture and Forestry, Medicinal and Aromatic Plants I, Vol. 4 (pp 237–250). Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H & Seto H (1998) A 1–deoxy-D-xylulose 5–phosphate reductoisomerase catalyzing the formation of 2–C-methyl-D-erythritol 4–phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc. Natl. Acad. Sci. USA 95: 9879–9884

    Google Scholar 

  • Thomson RH (1971) Naturally Occurring Quinones (2nd edn). Academic Press, London

    Google Scholar 

  • Thomson RH (1987) Naturally Occurring Quinones. III. Recent Advances. Chapman and Hall, London

    Google Scholar 

  • Thomson RH (1996) Naturally Occuring Quinones. IV. Chapman and Hall, London

    Google Scholar 

  • Tosa H, Linuma M, Asai F, Tanaka T, Nozaki H, Ikeda S, Tsutsui K, Tsutsui K, Yamada M & Fujimori S (1998) Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Biol. Pharm. Bull. 21: 641–642

    Google Scholar 

  • Tripathi YB, Sharma M & Manickam M (1997) Rubiadin, a new antioxidant from Rubia cordifolia. Ind. J. Biochem. Biophys. 34: 302–306

    Google Scholar 

  • Van den Berg AJJ & Labadie RP (1989) iQuinones. In: Harborne JB (ed) Methods In Plant Biochemistry, Vol 1 (pp 451–491). Academic Press Limited, London

    Google Scholar 

  • Van der Heijden R, Verpoorte R, Hoekstra SS & Hoge JHC (1994) Nordamnacanthal, a major anthraquinone from an Agrobacterium rhizogenes induced root culture of Rubia tinctorum. Plant Physiol. Biochem. 32: 399–404

    Google Scholar 

  • Van der Leer T, Wijnsma R, Van der Heijden R, Verpoorte R & Svendsen AB (1991) A comparative study of the effects of Ltryptophan and tryptamine on a nonalkaloid producing cell suspension culture of Cinchona ledgeriana. Plant Physiol. Biochem. 29: 91–98

    Google Scholar 

  • Van der Plas LHW, Eijkelboom C & Hagendoorn MJM (1995) Relation between primary and secondary metabolism in plant cell suspensions. Plant Cell Tiss. Org. Cult. 43: 111–116

    Google Scholar 

  • Van der Plas LHW, Hagendoorn MJM & Jamar DCL (1998) Anthraquinones glycosylation and hydrolysis in Morinda citrifolia cell suspensions: regulation and function. J. Plant Physiol. 152: 235–241

    Google Scholar 

  • Van Tegelen LJP, Bongaerts RJM, Croes AF, Verpoorte R & Wullems GJ (1999a) Isochorismate synthase isoforms from elicited cell cultures of Rubia tinctorum. Phytochemistry 51: 263–269

    Google Scholar 

  • Van Tegelen LJP, Stalman M, Wind J, Vernooij J, Croes AF & Wullems GJ (1999b) Role of isochorismate synthase in chorismate partitioning in anthraquinone-synthesizing cell cultures of Morinda citrifolia. Ph.D Thesis (pp 77–89). Univ. of Nijmegen, The Netherlands

    Google Scholar 

  • Van Tegelen LJP, Toebes A, Stalman M, Croes AF & Wullems GJ (1999c) Role of isochorismate synthase in the regulation of anthraquinone biosynthesis in elicited cell cultures of Rubia tinctorum. Ph.D Thesis (pp 63–73). Univ. of Nijmegen, The Netherlands

    Google Scholar 

  • Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M & Clastre M (2000) Cloning and expression of cDNAs encoding two enymes of the MEP pathway in Catharanthus roseus. Biochim. Biophys. Acta 1517: 159–163

    Google Scholar 

  • Verpoorte R & Alfermann AW (2000) Metabolic Engineering Of Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Vidal-Tessier AM, Delaveau P & Champion B (1987) New anthraquinones of Rubia cordifolia L. roots. Ann. Pharm. Fr. 45: 261–167

    Google Scholar 

  • Walter MH, Fester T & Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol 4–phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids. Plant J. 21: 571–578

    Google Scholar 

  • Weissenborn DL, Denbow CJ, Laine M, Lång S, Yang Z, Yu X & Cramer CL (1995) HMG-CoA reductase and terpenoid phytoalexins: molecular specialization within a complex pathway. Physiol. Plant. 93: 393–400

    Google Scholar 

  • Westendorf J, Pfau W & Schulte A (1998) Carcinogenicity and DNA adduct formation observed in ACI rats after long-term treatment with madder root, Rubia tinctorum L. Carcinogenesis 19: 2163–2168

    Google Scholar 

  • Wijnsma R, Go JTKA, Van Weerden IN, Harkes PAA, Verpoorte R & Baerheim-Svendsen A (1985) Anthraquinones as phytoalexins in cell and tissue cultures of Cinchona sp. Plant Cell Rep. 4: 241–244

    Google Scholar 

  • Wijnsma R & Verpoorte R (1986) Anthraquinones in the Rubiaceae. In: Herz W, Grisebach GW & Kirby Ch Tamm (eds) Prog. Chem. Org. Nat. Prod., Vol. 49 (pp 79–149). Springer-Verlag, Vienna, New York

    Google Scholar 

  • Xiang H & Guo Y (1997) Studies on the production of anthraquinone by plant cell suspension culture. Huanan Ligong Daxue Xuebao, Ziran Kexueban 25: 62–67

    Google Scholar 

  • Yamamoto H, Tabata M & Leistner E (1987) Cytological changes associated with induction of anthraquinone synthesis in photoautotrophic cell suspension cultures of Morinda lucida. Plant Cell Rep. 6: 187–190

    Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P & Potrykus I (2000) Engineering the provitamin A (-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305

    Google Scholar 

  • Younos C, Rolland A, Fleurentin J, Lanhers M, Misslin R & Mortier F (1990) Analgesic and behavioural effects of Morinda citrofolia. Planta Med. 56: 430–434

    Google Scholar 

  • Zenk MH, El-Shagi H & Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med. (Suppl) 79–101

  • Zenk MH, Schulte U & El-Shagi H (1984) Regulation of anthraquinone formation by phenoxyacetic acids in Morinda cell cultures. Naturwissenschaften 71 266

    Google Scholar 

  • Zhou Z, Jiang SH, Zhu DY, Lin LZ & Cordell GA (1994) Anthraquinones from Knoxia valerianoides. Phytochemistry 36: 765–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Verpoorte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, YS., Van der Heijden, R. & Verpoorte, R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell, Tissue and Organ Culture 67, 201–220 (2001). https://doi.org/10.1023/A:1012758922713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012758922713

Navigation