Skip to main content
Log in

Positron annihilation in free volume elements of polymer structures

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Free volume effects are important for positronium formation, pick‐off annihilation and chemical reactions. In order to make the method of positron annihilation an effective technique for quantitative studies of molecular solids, for example polymers, the relation between the intensity of the long‐lived component of lifetime distribution of positron annihilation and the number of defects (elementary free volumes) was considered. The analysis assumes selective trapping of positrons and positronium in the defects of ordered and disordered (crystalline and amorphous) sites, respectively, the sizes of nonhomogeneities are assumed to be lower than positron diffusion length. The results on positronium annihilation in porous poly(phenylene oxide) allow one to estimate nontrapped positronium diffusion coefficient which is equal to \(\). The relation between the positronium lifetime and effective size of free volume for large pores (effective radius \(\geqslant \) 1 nm) is considered. Experimental results were obtained using the CONTIN program; some comments on its application for calculations of size distribution of elementary free volumes in polymers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Brandt, S. Berko and W.W. Walker, Phys. Rev. 120 (1960) 1229.

    Google Scholar 

  2. W. Brandt and R. Paulin, Phys. Rev. B 5 (1972) 2430.

    Google Scholar 

  3. S.J. Tao, J. Chem. Phys. 56 (1972) 5499.

    Google Scholar 

  4. M. Eldrup, D. Lightbody and J.N. Sherwood, Chem. Phys. 63 (1981) 51.

    Google Scholar 

  5. R.B. Gregory, J. Appl. Phys. 70(9) (1991) 4665.

    Google Scholar 

  6. Q. Deng and Y.C. Jean, Macromolecules 26 (1993) 30.

    Google Scholar 

  7. V.P. Shantarovich, J. Radioanalytical Nucl. Chem. 210 (1996) 357.

    Google Scholar 

  8. D. Dlubek, A.P. Clarke, H.M. Fretwell, S.B. Dugdale and M.A. Alam, Phys. Status Solidi A 157 (1996) 35.

    Google Scholar 

  9. R.N. West, in: Positrons in Solids, ed. P. Hautojarvi (Springer, Berlin, 1979) p. 89.

    Google Scholar 

  10. M. Eldrup, O. Mogensen and G. Trumpy, J. Chem. Phys. 57 (1972) 495.

    Google Scholar 

  11. M. Eldrup, in: Positron Annihilation, eds. P.G. Coleman and S.C. Sharma (Norh-Holland, Amsterdam, 1982) p. 753.

    Google Scholar 

  12. R.L. Miller and R.F. Boyer, J. Polym. Sci.: Polym. Phys. 22 (1984) 2043.

    Google Scholar 

  13. A.V. Goldanskii, V.A. Onischuk and V.P. Shantarovich, in: Positron Annihilation, eds. P.G. Coleman and S.C. Sharma (World Sci., Singapore, 1989) p. 778.

    Google Scholar 

  14. V.P. Shantarovich, V.I. Goldanskii, Y.N. Molin, V.P. Perminov and G.I. Skubnevskaya, Izv. Akad. Nauk SSSR Ser. Khim. Izvestiya, Chemistry 10 (1967) 2188.

    Google Scholar 

  15. W. Brandt and J. Wilkenfeld, Phys. Rev. B: Solid State Phys. 12 (1975) 2579.

    Google Scholar 

  16. F.J. Belta Colleja, J. Serna, J. Vicente and M.A. Segovia, J. Appl. Phys. 58(1) (1985) 253.

    Google Scholar 

  17. O.K. Alekseeva, L.G. Aravin, V.A. Onischuk and V.P. Shantarovich, Physica Scripta 20 (1979) 681.

    Google Scholar 

  18. P.F. James, A. Paul, R.M. Singru, C. Dauwe, L. Dorikens-Vanpraet and M. Dorikens, J. Phys. C: Solid State Phys. 8 (1975) 393.

    Google Scholar 

  19. S.J. Tao and J.H. Green, Proc. Phys. Soc. 85 (1965) 463.

    Google Scholar 

  20. H. Nakanishi, Y.C. Jean, E.G. Smith and T.C. Sandreczki, J. Polym. Sci. B: Polym. Phys. 27 (1989) 1419.

    Google Scholar 

  21. V.P. Shantarovich, V.I. Kleiner, A.Y. Alentiev et al., Khimiya Vysokikh Energii 32(1) (1998) (High Energy Chemistry, in Russian).

  22. M. Maurino and W. Brandt, Bull. Am. Phys. Soc. 24 (1979) 72.

    Google Scholar 

  23. A.Z. Varisov, Sov. Solid State Phys. 28 (1986) 2173.

    Google Scholar 

  24. M. Eldrup, A. Vehanen, P.J. Schultz and K.G. Lynn, Phys. Rev. Lett. 51 (1983) 2007.

    Google Scholar 

  25. A.V. Goldanskii, V.A. Onischuk and V.P. Shantarovich, Phys. Status Solidi A 102 (1982) 559.

    Google Scholar 

  26. V.P. Shantarovich, Y.P. Yampolskii, I.B. Kevdina, Z.K. Azamatova and V.S. Khotimskii, Vysokomolek. Soed. A 39 (1997) 445 (Polymer Sci. A 39 (1997) 287).

    Google Scholar 

  27. Y. Kobayashi, K. Hirata, Y. Ujihira and K. Itoh, J. Radioanal. Nucl. Chem. 210 (1996) 525.

    Google Scholar 

  28. K.V. Waran, K.L. Cheng and Y.C. Jean, J. Phys. Chem. 88 (1984) 2465.

    Google Scholar 

  29. V.P. Shantarovich, Y.A. Novikov, Z.K. Azamatova and Y.P. Yampolskii, Macromolecules 31 (1998) 3963; V.P. Shantarovich, Y.A. Novikov and Z.K. Azamatova, Fizika Tverdogo Tela (Solid State Physics) 40(1) (1998) 164.

    Google Scholar 

  30. I.B. Kevdina, M.S. Arzhakov and V.P. Shantarovich, Vysokomolek. Soed. B 37 (1995) 171 (Polymer Sci. B 37 (1995) 171).

    Google Scholar 

  31. Y. Kobayashi, W. Zheng, E.F. Meyer, J.D. McGervey, A.M. Jamieson and R. Simha, Macromolecules 22 (1989) 2302.

    Google Scholar 

  32. V.P. Shantarovich, Y.P. Yampolskii and I.B. Kevdina, Khim. Vysokikh Energii (High Energy Chemistry) 28 (1994) 53.

    Google Scholar 

  33. L.O. Roellig, in: Positron Annihilation, eds. A.T. Stewart and L.O. Roellig (Academic Press, New York, 1967) p. 127.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shantarovich, V., Goldanskii, V. Positron annihilation in free volume elements of polymer structures. Hyperfine Interactions 116, 67–81 (1998). https://doi.org/10.1023/A:1012622822148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012622822148

Keywords

Navigation