Skip to main content
Log in

Cognitive Maps for Planetary Rovers

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This essay explores the problem of providing both autonomy and safety for a planetary rover too far away for continuous teleoperated control. Evidence from animal and human spatial behavior suggests useful characteristics for the sensory system and cognitive map of a planetary rover. I then sketch a design for a mixed-initiative exploration strategy for a semi-intelligent rover with a remote human operator, and describe some questions to be resolved by further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooks, R.A. 1986. A robust layered control system for a mobile robot. IEEE Trans. on Robotics and Automation, RA-2(1): 14–23.

    Google Scholar 

  • Chown, E., Kaplan, S., and Kortenkamp, D. 1995. Prototypes, location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science, 19(1):1–51.

    Google Scholar 

  • Fox, D., Burgard, W., and Thrun, S. 1997. The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1).

  • Gallistel, C.R. 1990. The Organization of Learning, MIT Press: Cambridge, MA.

    Google Scholar 

  • Gat, E., Desai, R., Ivlev, R., Loch, J., and Miller, D. 1994. Behavior control for robotic exploration of planetary surfaces. IEEE Trans. on Robotics and Automation, 10(4):490–503.

    Google Scholar 

  • Gladwin, T. 1970. East is a Big Bird: Navigation and Logic on Puluwat Atoll, Harvard University Press: Cambridge, MA.

    Google Scholar 

  • Golledge, R.G. (Ed.), 1999. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, The Johns Hopkins University Press: Baltimore, MD.

    Google Scholar 

  • Huntsberger, T. 2001. Biologically inspired autonomous rover control. Autonomous Robots, 11(3):341–346.

    Google Scholar 

  • Hutchins, E.L. 1995. Cognition in the Wild, MIT Press: Cambridge, MA.

    Google Scholar 

  • Kuipers, B.J. 1978. Modeling spatial knowledge. Cognitive Science, 2:129–153; Reprinted in Advances in Spatial Reasoning, Vol. 2, 1990. Su-Shing Chen (Ed.), Ablex Publishing: Norwood, NJ. pp. 171–198.

    Google Scholar 

  • Kuipers, B.J. 2000. The spatial semantic hierarchy. Artificial Intelligence, 119:191–233.

    Google Scholar 

  • Muscettola, N., Nayak, P.P., Pell, B., and Williams, B.C. 1998. Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103(1/2).

  • Slack, M.G. 1993. Navigation templates: Mediating qualitative guidance and quantitative control in mobile robots. IEEE Trans. on Systems, Man and Cybernetics, 23(2):452–466.

    Google Scholar 

  • Thrun, S. 1998. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99:21–71.

    Google Scholar 

  • Thrun, S., Gutmann, S., Fox, D., Burgard, W., and Kuipers, B.J. 1998. Integrating topological and metric maps for mobile robot navigation: A statistical approach. In Proc. 15th National Conf. on Artificial Intelligence (AAAI-98), AAAI/MIT Press, pp. 989–995.

  • Trullier, O., Wiener, S.I., Berthoz, A., and Meyer, J.-A. 1997. Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51:483–544.

    Google Scholar 

  • Volpe, R. 1999. Navigation results from desert field tests of the Rocky 7 Mars rover prototype. International Journal of Robotics Research, 18(7):669–683.

    Google Scholar 

  • Volpe, R., Estlin,T., Laubach, S., Olson, C., and Balaram, J. 2000. Enhanced Mars rover navigation techniques. In IEEE International Conference on Robotics and Automation.

  • Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. 2001. The CLARAty architecture for robotic autonomy. In IEEE Aerospace Conference, Big Sky, Montana.

  • Washington, R., Golden, K., and Bresina, J. 1999a. Plan execution, monitoring and adaptation for planetary rovers. In Proc. IJCAI-99 Workshop: Scheduling and Planning Meet Real-Time Monitoring in a Dynamic and Uncertain World, Stockholm, Sweden.

  • Washington, R., Golden, K., Bresina, J., Smith, D.E., Anderson, C., and Smith, T. 1999b. Autonomous rovers for Mars exploration. In IEEE Aerospace Conference.

  • Wehner, R. 1999. Large-scale navigation: The insect case. In C. Freksa and D.M. Mark (Eds.), Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, Springer: Berlin, pp. 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuipers, B. Cognitive Maps for Planetary Rovers. Autonomous Robots 11, 325–331 (2001). https://doi.org/10.1023/A:1012463728877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012463728877

Navigation