Skip to main content
Log in

Purification of Proteins Using Foam Fractionation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purification is an important step in the production of pharmaceuticals from recombinant proteins. The characteristics of industrial-scale purification schemes, such as conventional chromatography, have a significant impact on the cost of production. Foam fractionation, a novel separation technique based upon the differences in affinities of components for the gas/aqueous interface of a foam, has the potential to be a cost-effective component in a purification scheme. This review covers some of the more recent studies in understanding the process and applications of foam fractionation in protein-containing systems with special attention to the requirements of pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. I. C. Wang. Biotechnology: Status and Perspectives. AICHE Monograph Series. 84:1–22 (1988).

    Google Scholar 

  2. J. L. Dwyer. Scaling up bio-product separation with high performance liquid chromatography. Bio/Technology. Nov. 957–964 (1984).

  3. A. W. Adamson. Physical Chemistry of Surfaces 4th ed. J. Wiley and Sons, New York, 1982.

    Google Scholar 

  4. P. J. Halling. Protein stabilized foams and emulsions. CRC Critical Reviews in Food Science and Nutrition. 15:155–203 (1981).

    Google Scholar 

  5. J. A. DeFleijter and J. Benjamnis. Adsorption Kinetics of Proteins at the Air-Water Interface, in Food Emulsions and Foams, ed. by E. Dickinson, Royal Chemical Society (1987) p 72–85.

  6. P. Suttiprasit, V. Krisdhasima, and J. McGuire. The surface activity of lactalbumin, lactoglobulin, and bovine serum albumin. J. Coll. Interfac. Sci. 154:316–326 (1992).

    Google Scholar 

  7. M. Coke, P. J. Wilde, E. J. Russell, and D. C. Clark. The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures. J. Coll. Interfac. Sci. 138:489–504 (1990).

    Google Scholar 

  8. G. Andrews and F. Schutz. Differential adsorption of pepsin and rennin on foam. Biochem. J. 39:LI (1945).

    Google Scholar 

  9. S. E. Charm, J. Morningstar, C. C. Matteo, and B. Paltiel. The separation and purification of enzymes through foaming. Analytical Biochem. 15:498–508 (1966).

    Google Scholar 

  10. B. Holmstrom. Foam concentration of streptokinase from crude culture filtrates. Biotech. and Bioeng. X:551–552 (1968).

    Google Scholar 

  11. P. Bhattacharya, S. K. Ghosal, and K. Sen. Effect of physicochemical parameters on the separation of proteins from human placental extract by using a continuous foam fractionating column. Separation Sci. and Tech. 26:1279–1293 (1991).

    Google Scholar 

  12. Y-F. Maa and C. C. Hsu. Protein denaturation by combined effect of shear and air-liquid interface. Biotech. Bioeng. 54:503–512 (1997).

    Google Scholar 

  13. G. A. Montero, T. F. Kirschner, and R. D. Tanner. Bubble and foam concentration of cellulase. Applied Biochem. and Biotech. 39/40:467–475 (1993).

    Google Scholar 

  14. J. Varley and S. K. Ball. Foam separation for enzyme recovery: Maintenance of activity. Separations for Biotech. 3. 158:525–531 (1994).

    Google Scholar 

  15. C. E. Lockwood, P. M. Bummer, and M. Jay. Unpublished data.

  16. M. Bhatnagar and Y. Ito. Foam Countercurrent chromatography on various test samples and the effects of additives on foam affinity. J. Liq. Chrom. 11:21–36 (1988).

    Google Scholar 

  17. Z. Lalchev, L. Dimitrova, P. Tzvetkova, and D. Exerowa. Foam separation of DNA and proteins from solutions. Biotech. and Bioeng. XXIV:2253–2262 (1982).

    Google Scholar 

  18. A. Traboulsi and P. M. Bummer. Denaturation of horse skeletal muscle myoglobin in agitated solutions. Pharm. Res. 12:S-231 (1995).

    Google Scholar 

  19. R. T. Darrington and B. D. Anderson. The role of intramolecular nucleophillic catalysis and the effects of self-association on the deamidation of human insulin at low pH. Pharm. Res. 11:784–93 (1994).

    Google Scholar 

  20. S. I. Ahmad. Laws of foam formation and foam fractionation I. The effect of different operating parameters on the foam fractionation of albumin from a solution containing organic and inorganic materials. Sep. Sci. 10:673–688 (1975).

    Google Scholar 

  21. R. W. Schnepf and E. L. Gaden, Jr. Foam fractionation of proteins: Concentration of aqueous bovine serum albumin. J. Biochem. And Microbio. Tech. and Eng. I:1–8 (1959).

    Google Scholar 

  22. R. D. Gehle and K. Schugerl. Protein recovery by continuous flotation. Appl. Microbio. And Biotech. 20:133–138 (1984).

    Google Scholar 

  23. L. Brown, G. Narsimhan, and P. C. Wankat. Foam fractionation of globular proteins. Biotech. and Bioeng. 36:947–959 (1990).

    Google Scholar 

  24. K. S. Birdi. Lipid and Biopolymer Monolayers at Liquid Interfaces, Plenum Press, New York, 1989.

    Google Scholar 

  25. C. E. McDonald and J. W. Pence. Wheat gliadin in foams for food products. Food Tech. 15:141–146 (1961).

    Google Scholar 

  26. D. A. Edwards, H. Brenner, and D. T. Wasan. Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, 1991.

    Google Scholar 

  27. R. B. Grieves, D. Bhattacharyya, and C. J. Crandall. Foam separation of colloidal particulates. J. Appl. Chem. 17:163-(1967).

    Google Scholar 

  28. R. B. Grieves and D. Bhattacharyya. Foam separation of colloidal particulates: Rate studies. J. Appl. Chem. 18:149–154 (1968).

    Google Scholar 

  29. F. Uraizee and G. Narsimhan. Effects of adsorption and coalescence on continuous foam concentration of proteins: Comparison of experimental results with model predictions. Biotech. and Bioeng. 51:384–398 (1996).

    Google Scholar 

  30. G. D. Miles, L. Shedlovsky, and J. Ross. Foam drainage. J. Phys. Chem. 49:93–107 (1945).

    Google Scholar 

  31. W. M. Jacobi, K. E. Woodcock, and C. S. Grove, Jr. Theoretical investigation of foam drainage. Industrial and Eng. Chem. 48:2046–2051 (1956).

    Google Scholar 

  32. D. Desai and R. Kumar. Flow through a plateau border of cellular foam. Chem. Eng. Sci. 37:1361–1370 (1982).

    Google Scholar 

  33. S. Hartland and A. D. Barber. A model for cellular foam. Trans. Instn. Chem. Engrs. 52:43–52 (1974).

    Google Scholar 

  34. R. A. Leonard and R. Lemlich. A study of interstitial liquid flow in foam. AICHE J. 11:18–29 (1965).

    Google Scholar 

  35. D. Desai and R. Kumar. Liquid holdup in semi-batch cellular foams. Chem. Eng. Sci. 38:1525–1534 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Bummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockwood, C.E., Bummer, P.M. & Jay, M. Purification of Proteins Using Foam Fractionation. Pharm Res 14, 1511–1515 (1997). https://doi.org/10.1023/A:1012109830424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012109830424

Navigation