Skip to main content
Log in

Soluble Self-Assembled Block Copolymers for Drug Delivery

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai. Block copolymer micelles as vehicles for drug delivery. J. Cont. Rel. 24:119-132 (1993).

    Google Scholar 

  2. G. S. Kwon and T. Okano. Polymeric micelles as new drug carriers. Adv. Drug Del. Rev. 16:107-116 (1996).

    Google Scholar 

  3. G. S. Kwon. Diblock copolymer nanoparticles for drug delivery. CRC Crit. Rev. Ther. Drug Carrier Syst. 15:481-512 (1998).

    Google Scholar 

  4. V. Y. Alakhov and A. V. Kabanov. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Op. Invest. Drugs 7:1453-1473 (1998).

    Google Scholar 

  5. L. W. Seymour, K. Kataoka, and A. V. Kabanov. Cationic block copolymers as self-assembling vectors for gene delivery. In A. V. Kabanov, L. W. Seymour and P. Felgner (eds.), Self-assembling Complexes for Gene Delivery from Laboratory to Clinical Trial, John Wiley, Chichester, 1998, pp. 219-239.

    Google Scholar 

  6. M. Yokoyama, G. S. Kwon, T. Okano, Y. Sakurai, T. Sero, and K. Kataoka. Preparation of micelle-forming polymer-drug conjugate. Bioconj. Chem. 3:295-301 (1992).

    Google Scholar 

  7. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of micelle-forming polymeric anticancer drug adriamycin-conjugate poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 50:1693-700 (1990).

    PubMed  Google Scholar 

  8. M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C. Shibazaki, and K. Kataoka. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res. 51:3229-3236 (1991).

    PubMed  Google Scholar 

  9. G. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J. Cont. Rel. 29:17-23 (1994).

    Google Scholar 

  10. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai, and T. Okano. Characterization of physical entrapment and chemical conjugate of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J. Cont. Rel. 50:79-92 (1998).

    Google Scholar 

  11. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Polymeric micelles based on ab block copolymers of poly(ethylene oxide) and poly(beta-benzyl 1-aspartate). Langmuir 9:945-949 (1993).

    Google Scholar 

  12. S. B. La, T. Okano, and K. Kataoka. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(β benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85:85-90 (1996).

    PubMed  Google Scholar 

  13. A. Lavasanifar, J. Samuel, and G. Kwon. Block copolymer micelles with a fatty acid core structure: synthetic analogs of lipoproteins. PharmSci Supplement 1:S-101 (1998).

    Google Scholar 

  14. B. Rihova and I. Riha. Immunological problems of polymer-bound drugs. CRC Crit. Rev. Ther. Drug Carrier Syst. 1:311-374 (1985).

    Google Scholar 

  15. R. L. Hunter, F. Strickland, and F. Kezdy. Studies in the adjuvant activity of nonionic block polymer surfactants. I. The role of hydrophile-lipophile balance. J. Immunol. 133:1244-1250 (1981).

    Google Scholar 

  16. R. Duncan and J. Kopecek. Soluble synthetic polymer as potential drug carriers. Adv. in Polymer Sci. 57:51-101 (1984).

    Google Scholar 

  17. X. Zhang, J. K. Burt, and H. M. Burt. Development of amphiphilic diblock copolymers as micelar carriers of taxol. Int. J. Pharm. 132:195-206 (1996).

    Google Scholar 

  18. M. Ramaswamy, X. C. Zhang, H. M. Burt, and K. M. Wasan. Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J. Pharm. Sci. 86:460-464 (1997).

    PubMed  Google Scholar 

  19. X. C. Zhang, H. M. Burt, D. Vonhoff, D. Dexter, G. Mangold, D. Degen, A. M. Oktaba, and W. L. Hunter. An investigation of the antitumor activity and biodistribution of polymeric micellar taxol. Cancer Chemother. Pharmacol. 40:81-86 (1997).

    PubMed  Google Scholar 

  20. S. Katayose and K. Kataoka. PEG-poly(lysine) block copolymer as a novel type of synthetic gene vector with supramolecular structure. In N. Ogata, S. W. Kim, J. Feijen, and T. Okano (eds.), Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems, Springer, Tokyo, 1996, pp. 319-320.

    Google Scholar 

  21. M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulrich, O. Nazarova, and L. W. Seymour. Characterization of vectors for gene therapy formed by self-assembly of dna with synthetic block copolymers. Human Gene Ther. 7:2123-2133 (1996).

    Google Scholar 

  22. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, and S. Katayose. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29:8556-8557 (1996).

    Google Scholar 

  23. S. Katayose and K. Kataoka. Water-soluble polyion complex associates of dna and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconj. Chem. 8:702-707 (1997).

    Google Scholar 

  24. V. Weissig, K. R. Whiteman, and V. P. Torchillin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous lewis lung carcinoma in mice. Pharm. Res. 15:1552-1556 (1998).

    PubMed  Google Scholar 

  25. R. Duncan, T. A. Connors, and H. Maeda. Drug targeting in cancer therapy: the magic bullet, what next? J. Drug Target. 3:317-319 (1996).

    PubMed  Google Scholar 

  26. A. V. Kabanov, V. P. Chekhonin, V. Y. Alakhov, E. V. Batrakova, A. S. Lebedev, S. Melik-Nubarov, S. A. Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin, and V. A. Kabanov. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. FEBS 258:343-345 (1989).

    Google Scholar 

  27. A. V. Kabanov, E. V. Batrakova, N. S. Melik-Nubarov, N. A. Fedoseev, T. Y. Dorodnich, V. Y. Alakhov, V. P. Chekhonin, I. R. Nazarova, and V. A. Kabanov. A new class of drug carriers: micelles of poly(oxyethylene)-poly(propylene oxide) block copolymers as microcontainers for drug targeting from blood in brain. J. Contr. Rel. 22:141-158 (1992).

    Google Scholar 

  28. Y. Nagasaki and K. Kataoka. Heterotelechelic poly(ethylene glycol)s and their derivatives for active targeting drug delivery system. Polym. Preprints 39:190-191 (1998).

    Google Scholar 

  29. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, and T. Okano. Thermoresponsive polymer nanoparticles with a core/shell structure as site-specific drug carriers. J. Contr. Rel. 48:157-164 (1997).

    Google Scholar 

  30. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai and T. Okano. Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Contr. Rel. 53:119-130 (1998).

    Google Scholar 

  31. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai and T. Okano Preparation and Characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide)-co-poly(lactide). J. Contr. Rel. 55:87-98 (1998).

    Google Scholar 

  32. V. Y. Alakhov, E. Y. Moskaleva, E. V. Batrakova, and A. V. Kabanov. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic p85 block copolymer. Bioconj. Chem. 7:209-216 (1996).

    Google Scholar 

  33. D. W. Miller, E. Batrakova, T. O. Waltner, V. Y. Alakhov, and A. V. Kabanov. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption, Bioconj. Chem. 8:649-657 (1997).

    Google Scholar 

  34. E. V. Batrakova, H. Y. Han, V. Y. Alakhov, D. W. Miller, and A. V. Kabanov. Effects of pluronic block copolymers on drug absorption in caco-2 cell monolayers. Pharm. Res. 15:850-855 (1998).

    PubMed  Google Scholar 

  35. K. Dorn, G. Hoerpel, and H. Ringsdorf. Polymeric antitumor agents on a molecular and cellular level. In C. G. Gebelein and C. E. Carraher (eds.), Bioactive Polymeric Systems, Plenum Press, New York, 1985, pp. 531-585.

    Google Scholar 

  36. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchillin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:945 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Okano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, G.S., Okano, T. Soluble Self-Assembled Block Copolymers for Drug Delivery. Pharm Res 16, 597–600 (1999). https://doi.org/10.1023/A:1011991617857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011991617857

Navigation