Skip to main content
Log in

Substituent Effects in 0.65Pb(Mg1/3Nb2/3O30.35PbTiO3 Piezoelectric Ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Pb(Mg1/3Nb2/3O3–-PbTiO3 (PMN-PT) ceramics with base compositions close to the morphotropic phase boundary are potential materials for many applications such as transducers and actuators due to their high dielectric constants and electromechanical coupling factors. However, their dielectrical and mechanical losses are too high for high-power applications. In this paper, the dielectric and electromechanical properties of piezoelectric PMN-PT ceramics were investigated in specimens containing various A-site and B-site substituents with the goal of developing lower loss materials for wider applications. Emphasis was placed on various transition metal cation substituents of both lower and higher valences. Mn substituent was found to be the most promising substituent investigated for developing high power low loss piezoelectric PMN-PT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Smolenskii and Agranovskaya, Sov. Phys. Tech. Phys., 3, 1380 (1958).

    Google Scholar 

  2. J. Chen, H.M. Chan, and M.P. Harmer, J. Amer. Cer. Soc., 72(4), 593 (1989).

    Google Scholar 

  3. N. Setter and L.E. Cross, J. Appl. Phys., 51(8) 4356 (1980).

    Google Scholar 

  4. K. Uchino, K. Nomura, L.E. Cross, S.-J. Jang, and R.E. Newnham, J. Appl. Phys., 51[2], 1142 (1980).

    Google Scholar 

  5. S. Tashiro, M. Ikehiro, and H. Igarashi, Jpn. J. Appl. Phys., 36, 3004 (1997).

    Google Scholar 

  6. M. Lejeune and J.P. Boilot, Mater. Res. Bull., 20, 493 (1985).

    Google Scholar 

  7. S. Swartz and T. Shrout, Mat. Res. Bull., 17, 1245 (1982).

    Google Scholar 

  8. R.D. Shannon and C.T. Prewitt, Acta. Cryst., B25, 925 (1969).

    Google Scholar 

  9. N. Kim, W. Huebner, S.J. Jang, and T.R. Shrout, Ferroelectrics, 93, 341 (1989).

    Google Scholar 

  10. G.H. Haerling and C.E. Land, J. Am. Ceram. Soc., 54(1), 1 (1971).

    Google Scholar 

  11. Yohachi Yamashita, Jpn. J. Appl. Phys., 33, 5328 (1994).

    Google Scholar 

  12. S. Takahashi and S. Hirose, Jpn. J. Appl. Phys., 32, 2422 (1993).

    Google Scholar 

  13. C.M. Beck, N.W. Thomas, and I. Thompson, J. Europ. Ceram. Soc., 18, 1685 (1998).

    Google Scholar 

  14. Ian Burn, J. Mater. Sci., 14, 1979, 2453 (1979).

    Google Scholar 

  15. R.E. Newnham, Structure-Properties Relations, R.E. Newnham, ed. (Springer-Verlag, New York, 1975), pp. 148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Uchino, K. & Viehland, D. Substituent Effects in 0.65Pb(Mg1/3Nb2/3O30.35PbTiO3 Piezoelectric Ceramics. Journal of Electroceramics 6, 13–19 (2001). https://doi.org/10.1023/A:1011413518237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011413518237

Navigation