Skip to main content
Log in

Surface Charge Concentrations on Silica in Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The empirical rate laws formulated to describe the dissolution rates of oxide minerals include the surface charge concentration that results from the protonation and deprotonation of surface functional groups. Previous experiments on quartz and silica have shown that dissolution rates vary as a function of different background electrolyte solutions, however, such experiments are often conducted at elevated temperatures where it is difficult to estimate surface charge along with the dissolution rates. In the present study we measuresurface charge concentrations for silica in different electrolyte solutions at 298 K in order to quantify the extent to which the different counterions could affect the dissolution rates through their influence on the surface charge concentrations. The experimental solutions in the electrolyte series: LiCl, NaCl, KCl, RbCl, CaCl2, SrCl2 and BaCl2 were prepared to maintain a constant metal concentration of 1.0 M. For the alkali-metal chlorides, the surface charge concentrations correlate with the size of the hydrated alkali metal, consistent with the idea that these counterions affect charge via outer-sphere coordination that shield proton surface complexes from one another. The reactivity trend for alkaline-earth cations is less clear, but the data demonstrate distinct differences in the acid-base propertiesof the silica surface in these different electrolytes. We then discuss how these trends are manifested in the rate equations used to interpret dissolution experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abendroth, R. P (1970) Behavior of a pyrogenic silica in simple electrolytes. J. Colloid Interface Sci. 34, 591-596.

    Google Scholar 

  • Barker, P., Fontes, J.-C., Gasse, F. and Druart, J.-C. (1994) Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limn. Ocean. 39, 99-110.

    Google Scholar 

  • Blesa, M. A., Maroto, A. J. G. and Regazzoni, A. E. (1990) Surface of acidity of metal oxides immersed in water: A critical analysis of thermodynamic data. J. Colloid Interface Sci. 140, 287-290.

    Google Scholar 

  • Bleuzen, A, Foglia, F, Furet, E, Helm, L, Merbach, A. E. and E. Furet (1996) Second coordination shell water exchange rate and mechanism: Experiments and modeling on hexaaquachromium(III). J. Amer. Chem. Soc. 118, 12777-12787.

    Google Scholar 

  • Blum, A. and Lasaga, A. (1988) Role of surface speciation in the low-temperature dissolution of minerals. Nature 331, 431-433.

    Google Scholar 

  • Brady, P. V. (1992) Silica surface chemistry at elevated temperatures. Geochim. Cosmochim. Acta 56, 2941-2946.

    Google Scholar 

  • Brady, P. V. and Walther, J. V. (1990) Kinetics of quartz dissolution at low temperatures. Chem. Geol. 82, 253-264.

    Google Scholar 

  • Brady, P. V. and Walther, J. V. (1992) Surface chemistry and silicate dissolution at elevated temperatures. Amer. J. Sci. 292, 639-658.

    Google Scholar 

  • Burgess, J. (1988) Metal Ions in Solution. Ellis-Horwood, Chichester.

    Google Scholar 

  • Carroll, S. A., Bourcier, W. L. and Phillips, B. L. (1994) Surface chemistry and durability of borosilicate glass. Mater. Res. Soc. Symp. Proc. 333, 533-540.

    Google Scholar 

  • Carroll, S. A. (1989) The dissolution behavior of corundum, kaolinite and andalusite: a surface complex reaction model for the dissolution of aluminosilicate minerals in diagenetic and weathering environments. Ph.D. thesis, Northwestern University.

  • Carroll, S. A. and Walther, J. V. (1990) Kaolinite dissolution at 25 °C, 60 °C, and 80 °C. Amer. J. Sci. 290, 797-810.

    Google Scholar 

  • Casey, W. H. (1994) Enthalpy changes for Brønsted acid-base reactions on silica. J. Colloid Interface Sci. 163, 407-419.

    Google Scholar 

  • Casey, W. H., Hochella, M. F. and Westrich, H. R. (1993) The surface chemistry of manganiferous silicate minerals as inferred from experiments on tephroite (Mn2SiO4). Geochim. Cosmochim. Acta 57, 785-793.

    Google Scholar 

  • Casey, W. H. and Sposito, G. (1992) On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56, 3825-3830.

    Google Scholar 

  • De Keizer, A., Fokkink, L. G. J. and Lyklema, J. (1990) Thermodynamics of proton charge formation on oxides. Microcalorimetry. Colloids and Surfaces 49, 149-163.

    Google Scholar 

  • Despas, C., Walcarius, A. and Bessière, J. (1999) Influence of the base size and strength on the acidic properties of silica gel and monodispersed silica beads: Interest of impedance measurements in the in situ monitoring of the ionization process. Langmuir 15, 3186-3196.

    Google Scholar 

  • Dixon D. R. (1985) Interaction of alkaline-earth-metal ions with magnetite. Colloids and Surfaces 13, 273-28.

    Google Scholar 

  • Dove, P. M. (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim. Cosmochim. Acta 63, 3715-3727.

    Google Scholar 

  • Dove, P. M. and Crerar, D. A. (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim. Cosmochim. Acta 54, 955-969.

    Google Scholar 

  • Dove, P. M. and Rimstidt, J. D. (1994) Silica-water interactions. In: Silica: Physical Behavior, Geochemistry, and Materials Applications. (eds. P. J. Heaney, C. T. Prewitt, and G. V. Gibbs), Reviews in Mineralogy 29, 1-40. Mineral. Soc. America. Washington, D. C.

    Google Scholar 

  • Dove, P. M. and Nix, C. J. (1997) The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochim. Cosmochim. Acta 61, 3329-3340.

    Google Scholar 

  • Fawcett, W. R. (2000) Non-equilibrium phenomena in liquids and solutions. ch. 6 in: Liquids, Solutions, and Interfaces (W. R. Fawcett, ed.), Oxford University Press (in press).

  • Fokkink, L. G. J., de Keizer, A. and Lyklema, J. (1989) Temperature dependence of the electrical double layer on oxides: rutile and hematite. J. Colloid Interface Sci. 127, 116-131.

    Google Scholar 

  • Furrer, G. and Stumm, W. (1986) The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim. Cosmochim. Acta 50, 1847-1860.

    Google Scholar 

  • Gabano J. P., Etienne P. and Laurent J. F. (1965) Etude des proprietes de surface du bioxyde de manganese γ. Electrochim. Acta 10, 947-963.

    Google Scholar 

  • Gratz, A. J. and Bird, P. (1993) Quartz dissolution: Negative crystal experiments and a rate law. Geochim. Cosmochim. Acta 57, 965-976.

    Google Scholar 

  • Guy, C. and Schott, J. (1989) Multisite surface reaction versus transport control during the hydrolysis of a complex oxide. Chem. Geol. 78, 181-204.

    Google Scholar 

  • House, W. A. (1994) The role of surface complexation in the dissolution kinetics of silica effects of monovalent and divalent ions at 25 °C. J. Colloid Interface Sci. 163, 379-390.

    Google Scholar 

  • Jang H. J. and Fuerstenau D. W.(1986) The specific adsorption of alkaline-earth cations at the rutile/water interface. Colloids and Surfaces 21, 235-257.

    Google Scholar 

  • Kálmán, E. and Pálinkás, G. (1986) X-ray, electron, and neutron diffraction studies of ionic solvation, ch 10 in: The Chemical Physics of Solvation: Part B Spectroscopy of Solvation (eds. R. R. Dogonadze, E. Kálmán; A. A. Kornyshev, J. Ulstrup), pp. 501-539, Elsevier, New York.

    Google Scholar 

  • Kitamura, A., Fujiwara, K., Yamamoto, T., Nishikawa, S. and Moriyama, H. (1999) Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model. J. Nuclear Sci. Tech. 36, 1167-1175.

    Google Scholar 

  • Kubicki, J. D., Blake, G. A. and Apitz, S. E. (1996) Ab initio calculations on aluminosilicate Q3 species: Implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars. Am. Min. 81, 789-799.

    Google Scholar 

  • Lasaga, A. C. and Gibbs, G. V. (1990) Ab initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions. Amer. J. Sci. 290, 263-295.

    Google Scholar 

  • Lee, M. A., Winter, N. W. and Casey, W.H. (1994) Investigation of the ligand exchange reaction for the aqueous Be2+ ion. J. Phys. Chem. 98, 8641-8647.

    Google Scholar 

  • Machesky, M. L.; Wesolowski, D. J., Palmer, D. A. and Ichiro-Hayashi, K. (1998) Potentiometric titrations of rutile suspensions to 250 °C. J. Colloid Interface Sci. 200, 298-309.

    Google Scholar 

  • Machesky, M. L., Palmer, D. A. and Wesolowski, D. J. (1994) Hydrogen ion adsorption at the rutile-water interface to 250 °C. Geochim. Cosmochim. Acta 58, 5627-5632.

    Google Scholar 

  • Malati, M. A. and Estefan, S. F. (1966) The role of hydration in the adsorption of alkaline earth ions onto quartz. J. Colloid Interface Sci. 22, 306-307.

    Google Scholar 

  • Martell, A. E. and Hancock, R. D. (1996) Metal Complexes in Aqueous Solutions. Plenum Press. 253 pp.

  • Phillips, B. L., Tossell, J. A. and Casey, W. H. (1998) Experimental and theoretical treatment of elementary ligand exchange reactions in aluminum complexes. Environ. Sci. Tech. 32, 2865-2870.

    Google Scholar 

  • Richens, D. T. (1997) The Chemistry of Aqua Ions. John-Wiley and Sons, 592 pp.

  • Ridley, M. K., Machesky, M. L., Wesolowski, D. J. and Palmer, D. A. (1999) Calcium adsorption at the rutile-water interface: a potentiometric study in NaCl media to 250 °C. Geochim. Cosmochim. Acta 63, 3087-3096.

    Google Scholar 

  • Rotzinger, F. P. (1996) Structure of the transition states and intermediates formed in the water-exchange of metal hexaaqua ions of the first transition series. J. Amer. Chem. Soc. 118, 6760-6766.

    Google Scholar 

  • Sahai, N. and Sverjensky, D. A. (1997) Solvation and electrostatic model for specific electrolyte adsorption. Geochim. Cosmochim. Acta 61, 2827-2848.

    Google Scholar 

  • Schindler, P. W. and Stumm, W. (1987) The surface chemistry of oxides, hydroxides, and oxide minerals. ch 4 in: Aquatic Surface Chemistry (ed. W. Stumm), Wiley, pp. 83-110.

  • Sjöberg S., Hägglund, Y., Nordin A. and Ingri, N. (1983) Equilibrium and structural studies of silicon (IV) and aluminium (III) in aqueous solution-V. Acidity constants of silicic acid and the ionic product of water in the medium range 0.05-2.0 M Na(Cl) at 25 °C. Mar. Chem. 13, 35-44.

    Google Scholar 

  • Strandh, H.; Petterson, L. G. M., Sjöberg, L. and Wahlgren, U. (1997) Quantum chemical studies of the effects on silicate mineral dissolution rates by adsorption of alkali metals. Geochim. Cosmochim. Acta 61, 2577-2587.

    Google Scholar 

  • Stumm, W. (1992) Chemistry of the Solid-Water Interface. Wiley-Interscience, 428 pp.

  • Tadros, T. F and Lyklema, J. (1968) Adsorption of potential-determining ion at the silica-aqueous electrolyte interface and the role of some cations. J. Electroanal. Chem. 17, 267-275.

    Google Scholar 

  • Tewari, P. H. and Campbell, A. B. (1976) Temperature dependence of the point of zero charge of cobalt and nickel oxides and hydroxides. J. Coll. Interf. Sci. 55, 531-539.

    Google Scholar 

  • Westall, J. and Hohl, H. (1980) A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interface Sci. 12, 265.

    Google Scholar 

  • Westrich, H. R., Cygan, R. T., Casey, W. H., Zemitis, C. and Arnold, G. W. (1993) The dissolution kinetics of mixed-cation orthosilicate minerals. Amer. J. Sci. 293, 869-893.

    Google Scholar 

  • Wieland, E., Wehrli, B. and Stumm, W. (1988) The coordination chemistry of weathering III: a generalization on the dissolution rates of minerals. Geochim. Cosmochim. Acta 52, 1969-1981.

    Google Scholar 

  • Wirth, G. S. and Gieskes, J. M. (1979) The initial kinetics of dissolution of vitreous silica in aqueous media. J. Colloid Interface Sci. 68, 492-500.

    Google Scholar 

  • Yates, D. E. and Healy, T. W. (1980) Titanium dioxide-electrolyte interface: Part 2. Surface charge (titration) studies. J.C.S. Faraday I, 76, 9-18.

    Google Scholar 

  • Zinder, B., Furrer, G. and Stumm, W. (1986) The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50, 1861-1869.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, M., Craven, C., Dove, P.M. et al. Surface Charge Concentrations on Silica in Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates. Aquatic Geochemistry 7, 13–32 (2001). https://doi.org/10.1023/A:1011377400253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011377400253

Navigation