Skip to main content
Log in

The Cholinergic Neuronal Phenotype in Alzheimer's Disease

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The synthesis, storage and release of acetylcholine (ACh) requires the expression of several specialized proteins, including choline acetyltransferase (ChAT) and the vesicular ACh transporter (VAChT). The VAChT gene is located within the first intron of the ChAT gene. This unique genomic organization permits coordinated activation of expression of the two genes by extracellular factors. Much less is known about factors that reduce the expression of the cholinergic phenotype. A cholinergic deficit is one of the primary features of Alzheimer's disease (AD), and AD brains are characterized by amyloid deposits composed primarily of Aβ peptides. Although Aβ peptides are neurotoxic, part of the cholinergic deficit in AD could be attributed to the suppression of cholinergic markers in the absence of cell death. Indeed, we and others demonstrated that synthetic Aβ peptides, at submicromolar concentrations that cause no cytotoxicity, reduce the expression of cholinergic markers in neuronal cells. Another feature of AD is abnormal phospholipid turnover, which might be related to the progressive accumulation of apolipoprotein E (apoE) within amyloid plaques, leading perhaps to the reduction of apoE content in the CSF of AD patients. ApoE is a component of very low density lipoproteins (VLDL). As a first step in investigating a potential neuroprotective function of apoE, we determined the effects of VLDL on ACh content in neuronal cells. We found that VLDL increases ACh levels, and that it can partially offset the anticholinergic actions of Aβ peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe, E., Casamenti, F., Giovannelli, L., Scali, C. and Pepeu, G. (1994). Administration of amyloid β-peptides into the medial septum of rats decreases acetylcholine release from hippocampus in vivo. Brain Res. 636:162-164.

    PubMed  Google Scholar 

  • Adler, J.E., Schleifer, L.S. and Black, I.B. (1989). Partial purification and characterization of a membrane-derived factor regulating neurotransmitter phenotypic expression. Proc.Natl.Acad.Sci. USA 86:1080-1083.

    PubMed  Google Scholar 

  • Alderson, R.F., Alterman, A.L., Barde, Y.-A. and Lindsay, R.M. (1990). Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5:297-306.

    PubMed  Google Scholar 

  • Alfonso, A., Grundahl, K., Duerr, J.S., Han, H.-P. and Rand, J.B. (1993). The Caenorhabditis elegans unc-17 gene: A putative vesicular acetylcholine transporter. Science 261:617-619.

    Google Scholar 

  • Arendt, T., Schindler, C., Brückner, M.K., Eschrich, K., Bigl, V., Zedlick, D. and Marcova, L. (1997). Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein ɛ4 allele. J.Neurosci. 17:516-529.

    PubMed  Google Scholar 

  • Bahr, B.A., Clarkson, E.D., Rogers, G.A., Noremberg, K. and Parsons, S.M. (1992a). A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles. Biochemistry 31:5752-5762.

    PubMed  Google Scholar 

  • Bahr, B.A., Noremberg, K., Rogers, G.A., Hicks, B.W. and Parsons, S.M. (1992b). Linkage of the acetylcholine transporter-vesamicol receptor to proteoglycan in synaptic vesicles. Biochemistry 31:5778-5784.

    PubMed  Google Scholar 

  • Bamber, B.A., Masters, B.A., Hoyle, G.W., Brinster, R.L. and Palmiter, R.D. (1994). Leukemia inhibitory factor induces neurotransmitter switching in transgenic mice. Proc.Natl.Acad.Sci.USA 91:7839-7843.

    PubMed  Google Scholar 

  • Banner, L.R. and Patterson, P.H. (1994). Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc.Natl.Acad.Sci.USA 91:7109-7113.

    PubMed  Google Scholar 

  • Barany, M., Chang, Y.C., Arus, C., Rustan, T. and Frey, W.H. (1985). Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain. Lancet 1:517.

    Google Scholar 

  • Bauerfeind, R., Galli, T., and De Camilli, P. (1996). Molecular mechanisms in synaptic vesicle recycling. J Neurocytol 25:701-15.

    PubMed  Google Scholar 

  • Behl, C., Davis, J.B., Klier, F.G. and Schubert, D. (1994a). Amyloid β peptide induces necrosis rather than apoptosis. Brain Res. 645:253-264.

    Article  PubMed  Google Scholar 

  • Behl, C., Davis, J.B., Lesley, R. and Schubert, D. (1994b). Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77:817-828.

    Article  PubMed  Google Scholar 

  • Bejanin, S., Cervini, R., Mallet, J. and Berrard, S. (1994). A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J.Biol.Chem. 269:21944-21947.

    PubMed  Google Scholar 

  • Bejanin, S., Habert, E., Berrard, S., Edwards, J.B., Loeffler, J.P. and Mallet, J. (1992). Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells. J.Neurochem. 58:1580-1583.

    PubMed  Google Scholar 

  • Berrard, S., Varoqui, H., Cervini, R., Israël, M., Mallet, J. and Diebler, M.-F. (1995). Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J.Neurochem. 65:939-942.

    PubMed  Google Scholar 

  • Berse, B. and Blusztajn, J.K. (1995). Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor α, cAMP, and leukemia inhibitory factor ciliary neurotrophic factor signaling pathways in a murine septal cell line. J. Biol. Chem. 270:22101-22104.

    PubMed  Google Scholar 

  • Berse, B. and Blusztajn, J.K. (1997). Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 410:175-179.

    PubMed  Google Scholar 

  • Berse, B., López-Coviella, I. and Blusztajn, J.K. (1998). Effect of ciliary neurotrophic factor on cholinergic gene expression: modulation by nerve growth factor and glucocorticoids. J.Physiol.(Paris) 92:409-410.

    Google Scholar 

  • Berse, B., López-Coviella, I. and Blusztajn, J.K. (1999). Activation of TrkA by NGF upregulates expression of the cholinergic gene locus but attenuates the response to CNTF. Biochem. J. 342:301-308.

    PubMed  Google Scholar 

  • Bielarczyk, H. and Szutowicz, A. (1989). Evidence for the regulatory function of synaptoplasmic acetyl-CoA in acetylcholine synthesis in nerve endings. Biochem.J. 262:377-380.

    PubMed  Google Scholar 

  • Bierer, L.M., Haroutunian, V., Gabriel, S., Knott, P.J., Carlin, L.S., Purohit, D.P., Perl, D.P., Schmeider, J., Kanof, P. and Davis, K.L. (1995). Neurochemical correlates of dementia severity in Alzheimer's disease: Relative importance of the cholinergic deficits. J.Neurochem. 64:749-760.

    PubMed  Google Scholar 

  • Blennow, K., Hesse, C. and Fredman, P. (1994). Cerebrospinal fluid apolipoprotein E is reduced in Alzheimer's disease. Neuroreport 5:2534-2536.

    PubMed  Google Scholar 

  • Blusztajn, J.K., Liscovitch, M. and Richardson, U.I. (1987). Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line. Proc.Natl.Acad.Sci.USA. 84:5474-5477.

    PubMed  Google Scholar 

  • Blusztajn, J.K., Lopez Gonzalez-Coviella, I., Logue, M., Growdon, J.H. and Wurtman, R.J. (1990). Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer's disease but not of Down's syndrome patients. Brain Res. 536:240-244.

    PubMed  Google Scholar 

  • Blusztajn, J.K. and Wurtman, R.J. (1983). Choline and cholinergic neurons. Science 221:614-620.

    Google Scholar 

  • Bowen, D.M., Smith, C.B., White, P. and Davison, A.N. (1976). Neurotransmitter related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459-496.

    PubMed  Google Scholar 

  • Brown, J.W., Okonmah, A.D., Soliman, K.F.A., Carballeira, A. and Fishman, L.M. (1988). Corticosteroid effects on cholinergic enzymes in ethanol-treated fetal brain cell cultures. Experientia 44:898-900.

    PubMed  Google Scholar 

  • Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P., and Black, R. A. (1998). Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol Chem 273:27765-7.

    PubMed  Google Scholar 

  • Cervini, R., Houhou, L., Pradat, P.F., Béjanin, S., Mallet, J. and Berrard, S. (1995). Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene. J.Biol.Chem. 270:24654-24657.

    PubMed  Google Scholar 

  • Cohen, B.M., Renshaw, P.F., Stoll, A.L., Wurtman, R.J., Yurgelun-Todd, D. and Babb, S.M. (1995). Decreased brain choline uptake in older adults-An in vivo proton magnetic resonance spectroscopy study. JAMA 274:902-907.

    PubMed  Google Scholar 

  • Collier, B., Poon, P. and Salehmoghaddam, S. (1972). The formation of choline and of acetylcholine by brain in vitro. J.Neurochem. 19:51-60.

    PubMed  Google Scholar 

  • Coyle, J.T., Oster-Granite, M.L., Reeves, R.H. and Gearhart, J.D. (1988). Down syndrome, Alzheimer's disease and the trisomy 16 mouse. TINS 11:390-394.

    PubMed  Google Scholar 

  • Crowley, C., Spencer, S.D., Nishimura, M.C., Chen, K.S., Pitts-Meek, S., Armanini, M.P., Ling, L.H., McMahon, S.B., Shelton, D.L., Levinson, A.D. and Phillips, H.S. (1994). Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001-1011.

    PubMed  Google Scholar 

  • Daniels, M.P. and Hamprecht, B. (1974). The ultrastructure of neuroblastoma glioma somatic cell hybrids. Expression of neuronal characteristics stimulated by dibutyryl adenosine 3′,5′ cyclic monophosphate. J.Cell Biol. 63:691-699.

    PubMed  Google Scholar 

  • Eiden, L.E. (1998). The cholinergic gene locus. J. Neurochem. 70:2227-2240.

    PubMed  Google Scholar 

  • Emerich, D.F., Lindner, M.D., Winn, S.R., Chen, E.Y., Frydel, B.R. and Kordower, J.H. (1996). Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington's disease. J.Neurosci. 16:5168-5181.

    PubMed  Google Scholar 

  • Emerich, D.F., Winn, S.R., Hantraye, P.M., Peschanski, M., Chen, E.Y., Chu, Y., McDermott, P., Baetge, E.E. and Kordower, J.H. (1997). Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Nature 386:395-399.

    Google Scholar 

  • Erickson, J.D., Varoqui, H., Schäfer, M.K.H., Modi, W., Diebler, M.-F., Weihe, E., Rand, J., Eiden, L.E., Bonner, T.I. and Usdin, T.B. (1994). Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J.Biol.Chem. 269:21929-21932.

    PubMed  Google Scholar 

  • Fann, M.-J. and Patterson, P.H. (1994a). Depolarization differentially regulates the effects of bone morphogenetic protein (BMP)-2, BMP-6, and activin A on sympathetic neuronal phenotype. J. Neurochem. 63:2074-2079.

    PubMed  Google Scholar 

  • Fann, M.-J. and Patterson, P.H. (1994b). Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc.Natl.Acad.Sci. USA 91:43-47.

    PubMed  Google Scholar 

  • Fann, M. J. and Patterson, P. H. (1995). Activins as candidate cholinergic differentiation factors in vivo. Int J Dev Neurosci 13:317-330.

    PubMed  Google Scholar 

  • Fernandez-Chacon, R. and Sudhof, T. C. (1999). Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. Annu Rev Physiol 61:753-76.

    PubMed  Google Scholar 

  • Gage, F.H., Tuszynski, M.H., Chen, K.S., Fagan, A.M. and Higgins, G.A. (1991). Nerve growth factor function in the central nervous system. Curr.Top.Microbiol.Immunol. 165:71-94.

    Google Scholar 

  • Gilmor, M.L., Counts, S.E., Wiley, R.G. and Levey, A.I. (1998). Coordinate expression of the vesicular acetylcholine transporter and choline acetyltransferase following septohippocampal pathway lesion. J.Neurochem. 71:2411-2420.

    PubMed  Google Scholar 

  • Giovannelli, L., Casamenti, F., Scali, C., Bartolini, L. and Pepeu, G. (1995). Differential effects of amyloid peptides β-(1–40) and β-(25–35) injections into the rat nucleus basalis. Neuroscience 66:781-792.

    PubMed  Google Scholar 

  • Goedert, M., Strittmatter, W.J. and Roses, A.D. (1994). Alzheimer's disease: Risky apolipoprotein in brain. Nature 372:45-46.

    Google Scholar 

  • Gordon, I., Grauer, E., Genis, I., Sehayek, E. and Michaelson, D.M. (1995). Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci.Lett. 199:1-4.

    PubMed  Google Scholar 

  • Green, L.A. and Tischler, A.S. (1976). Establishment of noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to NGF. Proc.Natl.Acad.Sci.USA 73:2424-2428.

    PubMed  Google Scholar 

  • Gruninger-Leitch, F., Berndt, P., Langen, H., Nelboeck, P., and Dobeli, H. (2000). Identification of beta-secretase-like activity using a mass spectrometry-based assay system. Nat Biotechnol 18:66-70.

    PubMed  Google Scholar 

  • Habecker, B.A., Tresser, S.J., Rao, M.S. and Landis, S.C. (1995). Production of sweat gland cholinergic differentiation factor depends on innervation. Dev.Biol. 167:307-316.

    PubMed  Google Scholar 

  • Haga, T. and Noda, H. (1973). Choline uptake systems of rat brain synaptosomes. Biochim.Biophys.Acta 291:564-575.

    PubMed  Google Scholar 

  • Hagg, T., Quon, D., Higaki, J. and Varon, S. (1992). Ciliary neurotrophic factor prevents neuronal degeneration and promotes low affinity NGF receptor expression in the adult rat CNS. Neuron 8:145-158.

    PubMed  Google Scholar 

  • Hahm, S.H., Chen, L., Patel, C., Erickson, J., Bonner, T.I., Weihe, E., Schafer, M.K. and Eiden, L.E. (1997). Upstream sequencing and functional characterization of the human cholinergic gene locus. J.Mol.Neurosci. 9:223-236.

    Google Scholar 

  • Hahn, M., Hahn, S.L., Stone, D.M. and Joh, T.H. (1992). Cloning of the rat gene encoding choline acetyltransferase, a cholinergic neuron-specific marker. Proc.Natl.Acad.Sci.U.S.A. 89:4387-4391.

    PubMed  Google Scholar 

  • Hama, T., Miyamoto, M., Tsukui, H., Nishio, C. and Hatanaka, H. (1989). Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci.Lett. 104:340-344.

    PubMed  Google Scholar 

  • Handelmann, G.E., Boyles, J.K., Weisgraber, K.H., Mahley, R.W. and Pitas, R.E. (1992). Effects of apolipoprotein E, beta-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. J.Lipid.Res. 33:1677-1688.

    PubMed  Google Scholar 

  • Harkany, T., De Jong, G.I., Soós, K., Penke, B., Luiten, P.G.M. and Gulya, K. (1995a). β-Amyloid(1–42) affects cholinergic but not parvalbumin-containing neurons in the septal complex of the rat. Brain Res. 698:270-274.

    PubMed  Google Scholar 

  • Harkany, T., Lengyel, Z., Soós, K., Penke, B., Luiten, P.G. and Gulya, K. (1995b). Cholinotoxic effects of β-amyloid(1–42) peptide on cortical projections of the rat nucleus basalis magnocellularis. Brain Res. 695:71-75.

    PubMed  Google Scholar 

  • Hayashi, M. and Patel, A.J. (1987). An interaction between thyroid hormone and nerve growth factor in the regulation of choline acetyltransferase in neuronal cultures, derived from the septal-diagonal band region of the embryonic rat brain. Dev.Brain Res. 36:109-120.

    Google Scholar 

  • Hefti, F., David, A. and Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 293:305-311.

    PubMed  Google Scholar 

  • Hefti, F., Hartikka, J. and Bolger, M. (1986). Effect of thyroid hormone analogs on the activity of choline acetyltransferase in cultures of dissociated septal cells. Brain Res. 375:413-416.

    PubMed  Google Scholar 

  • Henke, H. and Lang, W. (1983). Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer type patients. Brain Res. 267:281-291.

    PubMed  Google Scholar 

  • Holler, T., Berse, B., Cermak, J.M., Diebler, M.-F. and Blusztajn, J.K. (1996). Differences in the developmental expression of the vesicular acetylcholine transporter and choline acetyltransferase in the rat brain. Neurosci.Lett. 212:107-110.

    PubMed  Google Scholar 

  • Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T. and Imahori, K. (1997). Nontoxic amyloid β peptide 1–42 suppresses acetylcholine synthesis-Possible role in cholinergic dysfunction in Alzheimer's disease. J.Biol.Chem. 272:2038-2041.

    PubMed  Google Scholar 

  • Hussain, I., Powell, D., Howlett, D. R., Tew, D. G., Meek, T. D., Chapman, C., Gloger, I. S., Murphy, K. E., Southan, C. D., Ryan, D. M., Smith, T. S., Simmons, D. L., Walsh, F. S., Dingwall, C., and Christie, G. (1999). Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14:419-27.

    PubMed  Google Scholar 

  • Ishii, K., Oda, Y., Ichikawa, T. and Deguchi, T. (1990). Complementary DNAs for choline acetyltransferase from spinal cords of rat and mouse: Nucleotide sequences, expression in mammalian cells, and in situ hybridization. Mol.Brain Res. 7:151-159.

    Google Scholar 

  • Junard, E.O., Montero, C.N. and Hefti, F. (1990). Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septohippocampal pathway. Exp.Neurol. 110:25-38.

    PubMed  Google Scholar 

  • Kamegai, M., Konishi, Y. and Tabira, T. (1990a). Trophic effect of granulocyte-macrophage colony-stimulating factor on central cholinergic neurons in vitro. Brain Res. 532:323-325.

    PubMed  Google Scholar 

  • Kamegai, M., Niijima, K., Kunishita, T., Nishizawa, M., Ogawa, M., Araki, M., Ueki, A., Konishi, Y. and Tabira, T. (1990b). Interleukin 3 as a trophic factor for central cholinergic neurons in vitro and in vivo. Neuron 4:429-436.

    PubMed  Google Scholar 

  • Kar, S., Issa, A.M., Seto, D., Auld, D.S., Collier, B. and Quirion, R. (1998). Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J. Neurochem. 70:2179-2187.

    PubMed  Google Scholar 

  • Kar, S., Seto, D., Gaudreau, P. and Quirion, R. (1996). β-Amyloid-related peptides inhibit potassium-evoked acetylcholine release from hippocampal slices. J.Neurosci. 16:1034-1040.

    PubMed  Google Scholar 

  • Kish, S.J., Distefano, L.M., Dozic, S., Robitaille, Y., Rajput, A., Deck, J.H.N. and Homykiewicz, O. (1990). [3H]Vesamicol binding in human brain cholinergic deficiency disorders. Neurosci.Lett. 117:347-352.

    PubMed  Google Scholar 

  • Klunk, W.E., Panchalingam, K., McClure, R.J. and Pettegrew, J.W. (1992). Brain metabolic alterations associated with clinical onset and course of Alzheimer's disease. Ann.Neurol. 32:268.

    Google Scholar 

  • Koh, J., Yang, L.L. and Cotman, C.W. (1990). β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533:315-320.

    Article  PubMed  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Gouras, G.K. and Price, D.L. (1991a). Biologic effects of nerve growth factor on lesioned basal forebrain neurons. Ann.NY Acad.Sci. 640:102-109.

    PubMed  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Nauta, H.J.W., Knüsel, B., Burton, L.E., Hefti, F.F., Mobley, W.C. and Price, D.L. (1991b). Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann.Neurol. 30:831-840.

    PubMed  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Winslow, J.W., Cayouette, M.H. and Price, D.L. (1993). Brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10:359-367.

    PubMed  Google Scholar 

  • Koliatsos, V.E., Nauta, H.J.W., Clatterbuck, R.E., Holtzman, D.M., Mobley, W.C. and Price, D.L. (1990). Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J.Neurosci. 10:3801-3813.

    PubMed  Google Scholar 

  • Kowall, N.W., Beal, M.F., Busciglio, J., Duffy, L.K. and Yankner, B.A. (1991). An in vivo model for the neurodegenerative effects of β amyloid and protection by substance P. Proc.Natl.Acad.Sci.USA 88:7247-7251.

    PubMed  Google Scholar 

  • Kushima, Y. and Hatanaka, H. (1992). Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat spinal cord. Neurosci.Lett. 143:110-114.

    PubMed  Google Scholar 

  • LaDu, M.J., Falduto, M.T., Manelli, A.M., Reardon, C.A., Getz, G.S. and Frail, D.E. (1994). Isoform-specific binding of apolipoprotein E to β-amyloid. J.Biol.Chem. 269:23403-23406.

    PubMed  Google Scholar 

  • Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. (1999). Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96:3922-7.

    PubMed  Google Scholar 

  • Lee, H.-C., Fellenz-Maloney, M.-P., Liscovitch, M. and Blusztajn, J.K. (1993). Phospholipase D-catalyzed hydrolysis of phosphatidylcholine provides the choline precursor for acetylcholine synthesis in a human neuronal cell line. Proc.Natl.Acad.Sci.USA 90:10086-10090.

    PubMed  Google Scholar 

  • Lefresne, P., Guyenet, P. and Glowinski, J. (1973). Acetylcholine synthesis from [2-14C]pyruvate in rat striatal slices. J.Neurochem. 20:1083-1097.

    PubMed  Google Scholar 

  • Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., Wisniewski, T., Saido, T.C. and Selkoe, D.J. (1996). Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol.Disease 3:16-32.

    Google Scholar 

  • Li, Y., Holtzman, D.M., Kromer, L.F., Kaplan, D.R., Chua-Couzens, J., Clary, D.O., Knüsel, B. and Mobley, W.C. (1995). Regulation of TrkA and ChAT expression in developing rat basal forebrain: Evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J.Neurosci. 15:2888-2905.

    PubMed  Google Scholar 

  • Li, Y.-P., Baskin, F., Davis, R. and Hersh, L.B. (1993). Cholinergic neuron-specific expression of the human choline acetyltransferase gene is controlled by silencer elements. J.Neurochem. 61:748-751.

    PubMed  Google Scholar 

  • Lönnerberg, P., Lendahl, U., Funakoshi, H., Ârhlund-Richter, L., Persson, H. and Ibáñez, C.F. (1995). Regulatory region in choline acetyltransferase gene directs developmental and tissue-specific expression in transgenic mice. Proc.Natl.Acad.Sci.USA 92:4046-4050.

    PubMed  Google Scholar 

  • Lönnerberg, P., Schoenherr, C.J., Anderson, D.J. and Ibáñez, C.F. (1996). Cell type-specific regulation of choline acetyltransferase gene expression. Role of the neuron-restrictive silencer element and cholinergic-specific enhancer sequences. J.Biol.Chem. 271:33358-33365.

    PubMed  Google Scholar 

  • Maden, M. and Holder, N. (1991). The involvement of retinoic acid in the development of the vertebrate central nervous system. Development 2:87-94.

    Google Scholar 

  • Mahley, R.W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622-630.

    Google Scholar 

  • Marchbanks, R.M. and Wonnacott, S. (1979). Relationship of choline uptake to acetylcholine synthesis and release. Prog.Brain Res. 49:77-88.

    PubMed  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E. and Nagai, T. (1984). Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 34:741-745.

    PubMed  Google Scholar 

  • McManaman, J.L., Crawford, F.G., Stewart, S.S. and Appel, S.H. (1988). Purification of a skeletal muscle polypeptide which stimulates choline acetyltransferase activity in cultured spinal cord neurons. J.Biol.Chem. 263:5890-5897.

    PubMed  Google Scholar 

  • Miatto, O., Blusztajn, J.K., Logue, M., Gonzalez, G., Buonanno, F., and Growdon, J.H. (1989) Detection of phospholipids in brain tissue using 31P NMR spectroscopy. Phospholipids in the nervous system: Biochemical and molecular pathology. (Bazan, N.G., Horrocks, L.A., and Toffano, G., eds) pp. 243-250, Liviana Press, Padua

    Google Scholar 

  • Milner, T.A. (1991). Cholinergic neurons in the rat septal complex: Ultrastructural characterization and synaptic relations with catecholaminergic terminals. J.Comp.Neurol. 314:37-54.

    PubMed  Google Scholar 

  • Misawa, H., Ishii, K. and Deguchi, T. (1992). Gene expression of mouse choline acetyltransferase. Alternative splicing and identification of a highly active promoter region. J.Biol.Chem. 267:20392-20399.

    PubMed  Google Scholar 

  • Misawa, H., Takahashi, R. and Deguchi, T. (1993). Transcriptional regulation of choline acetyltransferase gene by cyclic AMP. J.Neurochem. 60:1383-1387.

    PubMed  Google Scholar 

  • Misawa, H., Takahashi, R. and Deguchi, T. (1995). Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones. Neuroreport 6:965-968.

    PubMed  Google Scholar 

  • Montero, C.N. and Hefti, F. (1988). Rescue of lesioned septal cholinergic neurons by nerve growth factor: Specificity and requirement for chronic treatment. J.Neurosci. 8:2986-2999.

    PubMed  Google Scholar 

  • Naciff, J. M., Behbehani, M. M., Misawa, H., and Dedman, J. R. (1999). Identification and transgenic analysis of a murine promoter that targets cholinergic neuron expression. J Neurochem 72:17-28.

    PubMed  Google Scholar 

  • Naciff, J.M., Misawa, H. and Dedman, J.R. (1997). Molecular characterization of the mouse vesicular acetylcholine transporter gene. Neuroreport 8:3467-3473.

    PubMed  Google Scholar 

  • Nathan, B.P., Bellosta, S., Sanan, D.A., Weisgraber, K.H., Mahley, R.W. and Pitas, R.E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264:850-852.

    Google Scholar 

  • Nathan, B.P., Chang, K.C., Bellosta, S., Brisch, E., Ge, N.F., Mahley, R.W. and Pitas, R.E. (1995). The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J.Biol.Chem. 270:19791-19799.

    PubMed  Google Scholar 

  • Naumann, T., Kermer, P. and Frotscher, M. (1994). Fine structure of rat septohippocampal neurons. III. Recovery of choline acetyltransferase immunoreactivity after fimbria-fornix transection. J.Comp.Neurol. 350:161-170.

    PubMed  Google Scholar 

  • Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H. and Wurtman, R.J. (1992). Evidence for a membrane defect in Alzheimer disease brain. Proc.Natl.Acad.Sci.USA 89:1671-1675.

    PubMed  Google Scholar 

  • Parducz, A., Joo, F. and Toldi, J. (1986). Formation of synaptic vesicles in the superior cervical ganglion of the cat: Choline dependency. Exp.Brain Res. 63:221-224.

    PubMed  Google Scholar 

  • Parducz, A., Kiss, Z. and Joo, F. (1976). Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to neurohumoral transmission in sympathetic ganglia. Experientia 32:1520-1521.

    PubMed  Google Scholar 

  • Parsons, S.M., Bahr, B.A., Gracz, L.M., Kaufman, R., Kornreich, W.D., Nilsson, L. and Rogers, G.A. (1987). Acetylcholine transport: fundamental properties and effects of pharmacologic agents. Ann.NY.Acad.Sci. 493:220-233.

    PubMed  Google Scholar 

  • Patel. A.J., Hayashi, M. and Hunt, A. (1988). Role of thyroid hormone and nerve growth factor in the development of choline acetyltransferase and other cell-specific marker enzymes in the basal forebrain of the rat. J.Neurochem. 50:803-811.

    PubMed  Google Scholar 

  • Patterson, P.H. and Chun, L.L.Y. (1977). The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. Dev.Biol. 56:263-280.

    PubMed  Google Scholar 

  • Pearson, R.C.A., Sofroniew, M.V., Cuello, A.C., Powell, T.P.S., Eckenstein, F., Esiri, M.M. and Wilcock, G.K. (1983). Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of Alzheimer type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res. 289:375-379.

    PubMed  Google Scholar 

  • Pedersen, W.A., Berse, B., Schüler, U., Wainer, B.H. and Blusztajn, J.K. (1995). All-trans-and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: Evidence that the effects are mediated by activation of retinoic acid receptor alpha. J.Neurochem. 65:50-58.

    PubMed  Google Scholar 

  • Pedersen, W.A. and Blusztajn, J.K. (1997). Characterization of the acetylcholine-reducing effect of the amyloid-β peptide in mouse SN56 cells. Neurosci.Lett. 239:77-80.

    PubMed  Google Scholar 

  • Pedersen, W.A., Guo, Q., Hartman, B.K., and Mattson, M.P. (1997). Nerve growth factor-independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1. J. Biol. Chem.. 272:22397-22400.

    PubMed  Google Scholar 

  • Pedersen, W.A., Kloczewiak, M.A. and Blusztajn, J.K. (1996). Amyloid β-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc.Natl.Acad.Sci.USA 93:8068-8071.

    PubMed  Google Scholar 

  • Perry, E.K., Tomlinson, B.E., Blessed, G., Bergman, K., Gibson, P.H. and Perry, R.H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br.Med.J. 2:1457-1459.

    PubMed  Google Scholar 

  • Perry, R.H., Candy, J.M., Perry, E.K., Irving, D., Blessed, G., Fairburn, F. and Tomlinson, B.E. (1982). Extensive loss of choline acetyltransferase activity is not related to neuronal loss in nucleus of Meynert in Alzheimer's disease. Neurosci.Lett. 33:311-315.

    PubMed  Google Scholar 

  • Pettegrew, J.W., Minshew, N.J., Cohen, M.M., Kopp, S.J. and Glonek, T. (1984). 31P NMR changes in Alzheimer's and Huntington's disease brain. Neurology 34(suppl 1):281.

    Google Scholar 

  • Pike, C.J., Walencewicz, A.J., Glabe, C.G. and Cotman, C.W. (1991). In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563:311-314.

    PubMed  Google Scholar 

  • Pirttila, T., Mehta, P.D., Soininen, H., Kim, K.S., Heinonen, O., Paljarvi, L., Kosunen, O., Riekkinen, P. and Wisniewski, H.M. (1996). Cerebrospinal fluid concentrations of soluble amyloid beta-protein and apolipoprotein E in patients with Alzheimer's disease: correlations with amyloid load in the brain. Arch.Neurol. 53:189-193.

    PubMed  Google Scholar 

  • Poirier, J. (1994). Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease. Trends Neurosci. 17:525-530.

    PubMed  Google Scholar 

  • Poirier, J., Delisle, M.C., Quirion, R., Aubert, I., Farlow, M., Lahiri, D., Hui, S., Bertrand, P., Nalbantoglu, J., Gilfix, B.M. and Gauthier, S. (1995). Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc.Natl.Acad.Sci.USA 92:12260-12264.

    PubMed  Google Scholar 

  • Poirier, J., Hess, M., May, P.C. and Finch, C.E. (1991). Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res.Mol.Brain Res. 11:97-106.

    Google Scholar 

  • Prasad, K.N. and Kumar, S. (1974). Cyclic AMP and the differentiation of neuroblastoma cells in culture. Control of Proliferation in Animal Cells. (Clarkson, B. and Baserga, R., eds) pp. 581-594, Cold Spring Harbor Laboratory

  • Quastel, J.H., Tennenbaum, M. and Wheatley, A.H.M. (1936). Choline ester formation in, and cholinesterase of, tissues in vitro. Biochem.J. 30:1668-1681.

    Google Scholar 

  • Rao, M.S. and Landis, S.C. (1990). Characterization of a target-derived neuronal cholinergic differentiation factor. Neuron 5:899-910.

    PubMed  Google Scholar 

  • Rao, M.S., Patterson, P.H. and Landis, S.C. (1992). Multiple cholinergic differentiation factors are present in footpad extracts: Comparison with known cholinergic factors. Development 116:731-744.

    PubMed  Google Scholar 

  • Rao, M.S., Sun, Y., Escary, J.L., Perreau, J., Tresser, S., Patterson, P.H., Zigmond, R.E., Brulet, P. and Landis, S.C. (1993). Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron 11:1175-1185.

    PubMed  Google Scholar 

  • Roghani, A., Feldman, J., Kohan, S.A., Shirzadi, A., Gundersen, C.B., Brecha, N. and Edwards, R.H. (1994). Molecular cloning of a putative vesicular transporter for acetylcholine. Proc.Natl.Acad.Sci.USA 91:10620-10624.

    PubMed  Google Scholar 

  • Roheim, P.S., Carey, M., Forte, T. and Vega, G.L. (1979). Apolipoproteins in human cerebrospinal fluid. Proc.Natl.Acad.Sci.U.S.A. 76:4646-4649.

    PubMed  Google Scholar 

  • Ruberg, M., Mayo, W., Brice, A., Duyckaerts, C., Hauw, J.J., Simon, H., LeMoal, M. and Agid, Y. (1990). Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer's disease, Parkinson's disease, and rats with basal forebrain lesions. Neuroscience 35:327-333.

    PubMed  Google Scholar 

  • Saadat, S., Sendtner, M. and Rohrer, H. (1989). Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J. Cell Biol. 108:1807-1816.

    PubMed  Google Scholar 

  • Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D. and Roses, A.D. (1993). Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc.Natl.Acad.Sci.USA 90:9649-9653.

    PubMed  Google Scholar 

  • Schotzinger, R., Yin, X. and Landis, S. (1994). Target determination of neurotransmitter phenotype in sympathetic neurons. J.Neurobiol. 25:620-639.

    PubMed  Google Scholar 

  • Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y. and Kimura, H. (1995). Amyloid peptides are toxic via a common oxidative mechanism. Proc.Natl.Acad.Sci.USA 92:1989-1993.

    PubMed  Google Scholar 

  • Selkoe, D.J. (1994). Normal and abnormal biology of the β-amyloid precursor protein. Annu.Rev.Neurosci. 17:489-517.

    PubMed  Google Scholar 

  • Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., John, V. and others (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537-40.

    Google Scholar 

  • Slotkin, T.A., Nemeroff, C.B., Bissette, G. and Seidler, F.J. (1994). Overexpression of the high affinity choline transporter in cortical regions affected by Alzheimer's disease. Evidence from rapid autopsy studies. J.Clin.Invest. 94:696-702.

    PubMed  Google Scholar 

  • Sofroniew, M.V., Cooper, J.D., Svendsen, C.N., Crossman, P., Ip, N.Y., Lindsay, R.M., Zafra, F. and Lindholm, D. (1993). Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3. J.Neurosci. 13:5263-5276.

    PubMed  Google Scholar 

  • Sofroniew, M.V., Galletly, N.P., Isacson, O. and Svendsen, C.N. (1990). Survival of adult basal forebrain cholinergic neurons after loss of target neurons. Science 247:338-342.

    Google Scholar 

  • Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.-M., Jakes, R., Huang, D.Y., Pericak-Vance, M., Schmechel, D. and Roses, A.D. (1994). Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: Implications for Alzheimer disease. Proc.Natl.Acad.Sci.USA 91:11183-11186.

    PubMed  Google Scholar 

  • Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S. and Roses, A.D. (1993a). Apolipoprotein E: High-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc.Natl.Acad.Sci.USA 90:1977-1981.

    PubMed  Google Scholar 

  • Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.-M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D. and Roses, A.D. (1993b). Binding of human apolipoprotein E to synthetic amyloid β peptide: Isoform-specific effects and implications for late-onset Alzheimer disease. Proc.Natl.Acad.Sci.USA 90:8098-8102.

    PubMed  Google Scholar 

  • Südhof, T.C. (1995). The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 375:645-653.

    Article  PubMed  Google Scholar 

  • Suszkiw, J.B. and Pilar, G. (1976). Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J.Neurochem. 26:1133-1138.

    PubMed  Google Scholar 

  • Svendsen, C.N., Cooper, J.D. and Sofroniew, M.V. (1991). Trophic factor effects on septal cholinergic neurons. Ann.NY Acad.Sci. 640:91-94.

    PubMed  Google Scholar 

  • Szutowicz, A., Bielarczyk, H. and Lysiak, W. (1981). The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes. Int.J.Biochem. 13:887-892.

    PubMed  Google Scholar 

  • Szutowicz, A., Jankowska, A., Blusztajn, J. K., and Tomaszewicz, M. (1999). Acetylcholine and acetyl-CoA metabolism in differentiating SN56 septal cell line. J Neurosci Res 57:131-6.

    PubMed  Google Scholar 

  • Szutowicz, A., Morrison, M.R. and Srere, P.A. (1983). The enzymes of acetyl-CoA metabolism in differentiating cholinergic (S-20) and noncholinergic (NIE-115) neuroblastoma cells. J.Neurochem. 40:1664-1670.

    PubMed  Google Scholar 

  • Szutowicz, A., Srere, P.A., Allen, C.N. and Crawford, I.L. (1982a). Effects of septal lesions on enzymes of acetyl-CoA metabolism in the cholinergic system of the rat hippocampus. J.Neurochem. 39:458-463.

    PubMed  Google Scholar 

  • Szutowicz, A., Stepien, M., Bielarczyk, H., Kabata, J. and Lysiak, W. (1982b). ATP citrate lyase in cholinergic nerve endings. Neurochem.Res. 7:799-810.

    PubMed  Google Scholar 

  • Takei, N., Kuramoto, H., Endo, Y. and Hatanaka, H. (1997). NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum. Neurosci.Lett. 226:207-209.

    PubMed  Google Scholar 

  • Tian, X.T., Sun, X.Y. and Suszkiw, J.B. (1996). Developmental age-dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal rat septum by nerve growth factor. Neurosci.Lett. 209:134-136.

    PubMed  Google Scholar 

  • Toran-Allerand, C.D., Miranda, R.C., Bentham, W.D.L., Sohrabji, F., Brown, T.J., Hochberg, R.B. and MacLusky, N.J. (1992). Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc.Natl.Acad.Sci. USA 89:4668-4672.

    PubMed  Google Scholar 

  • Tucek, S. (1990). The synthesis of acetylcholine: twenty years of progress. Prog.Brain Res. 84:467-477.

    PubMed  Google Scholar 

  • Tuszynski, M.H., Buzsaki, G. and Gage, F.H. (1990). Nerve growth factor infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septohippocampal projection. Neuroscience 36:33-44.

    PubMed  Google Scholar 

  • Tuszynski, M.H., Sang U, H., Yoshida, K. and Gage, F.H. (1991). Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann.Neurol. 30:625-636.

    PubMed  Google Scholar 

  • Tuszynski, M.H., U, H.S., Amaral, D.G. and Gage, F.H. (1990). Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J.Neurosci. 10:3604-3614.

    PubMed  Google Scholar 

  • Ulus, I.H., Wurtman, R.J., Mauron, C. and Blusztajn, J.K. (1989). Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res. 484:217-227.

    PubMed  Google Scholar 

  • Usdin, T.B., Eiden, L.E., Bonner, T.I. and Erickson, J.D. (1995). Molecular biology of the vesicular ACh transporter. TINS 18:218-224.

    PubMed  Google Scholar 

  • Vaca, K., Stewart, S.S. and Appel, S.H. (1989). Identification of basic fibroblast growth factor as a cholinergic growth factor from human muscle. J.Neurosci.Res. 23:55-63.

    PubMed  Google Scholar 

  • Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999). Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735-41.

    Google Scholar 

  • Vizi, E.S., Kobayashi, O., Torocsik, A., Kinjo, M., Nagashima, H., Manabe, N., Goldiner, P.L., Potter, P.E. and Foldes, F.F. (1989). Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release. Neuroscience 31:259-267.

    PubMed  Google Scholar 

  • Vogels, O.J.M., Broere, C.A.J., Ter Laak, H.J., Ten Domkelaar, H.J., Nieuwenhuys, R. and Schulte, B.P.M. (1990). Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease. Neurobiol.Aging 11:3-13.

    PubMed  Google Scholar 

  • Weisgraber, K.H. and Mahley, R.W. (1996). Human apolipoprotein E: the Alzheimer's disease connection. FASEB J. 10:1485-1494.

    PubMed  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982). Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237-1239.

    Google Scholar 

  • Whitson, J.S., Glabe, C.G., Shintani, E., Abcar, A. and Cotman, C.W. (1990). β-Amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci.Lett. 110:319-324.

    PubMed  Google Scholar 

  • Whitson, J.S., Selkoe, D.J. and Cotman, C.W. (1989). Amyloid β protein enhances the survival of hippocampal neurons in vitro. Science 243:1488-1490.

    Google Scholar 

  • Wolfe, M. S., De Los Angeles, J., Miller, D. D., Xia, W., and Selkoe, D. J. (1999). Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 38:11223-30.

    PubMed  Google Scholar 

  • Wu, D. and Hersh, L.B. (1994). Choline acetyltransferase: Celebrating its fiftieth year. J.Neurochem. 62:1653-1663.

    PubMed  Google Scholar 

  • Yamamori, T., Fukada, K., Aebersold, R., Korsching, S., Fann, M.-J. and Patterson, P.H. (1989). The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 246:1412-1416.

    Google Scholar 

  • Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E. (1999). Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature 402:533-7.

    Google Scholar 

  • Yankner, B.A., Caceres, A. and Duffy, L.K. (1990a). Nerve growth factor potentiates the neurotoxicity of β amyloid. Proc.Natl.Acad.Sci.USA 87:9020-9023.

    PubMed  Google Scholar 

  • Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L. and Neve, R.L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245:417-420.

    Google Scholar 

  • Yankner, B.A., Duffy, L.K. and Kirschner, D.A. (1990b). Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides. Science 250:279-282.

    PubMed  Google Scholar 

  • Yates, C.M., Simpson, J., Gordon, A., Maloney, A.F., Allison, Y., Ritchie, I.M. and Urquhart, A. (1983). Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down's syndrome. Brain Res. 280:119.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blusztajn, J.K., Berse, B. The Cholinergic Neuronal Phenotype in Alzheimer's Disease. Metab Brain Dis 15, 45–64 (2000). https://doi.org/10.1023/A:1011161718572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011161718572

Navigation