Skip to main content
Log in

Luminescence-dating zeroing tests in Lake Hoare, Taylor Valley, Antarctica

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

In two of the perennially ice-covered lakes in the McMurdo Dry Valleys, lakes Hoare and Bonney in the Taylor Valley, bottom water has 14C ages of ∼2.7 ka and ∼10 ka (respectively), rendering 14C ages of bottom sediments highly problematic. Consequently, we tested the effectiveness of thermoluminescence (TL) zeroing in polymineral fine silt material from several depositional environments around and on the lake (stream suspensions, ice-surface sand dune, and silty sand from near the top of the more-than-3m-thick ice). We also conducted TL and infrared-stimulated-luminescence (IRSL) dating tests on material from three box cores recovered from the bottom of Lake Hoare, in a transect away from the abutting Canada Glacier. We observed effective zeroing of light-sensitive TL in suspended silt from one input stream and less effective zeroing from another stream. We observed effective zeroing of light-sensitive TL also in silt from a glacier-proximal eolian ice-surface dune and from sand from within the upper 5 cm of ice. In contrast, in box-core 1, the bottom sediment yielded minimum TL apparent ages of 1500-2600 yrs, with no discernable stratigraphic depth trend. IRSL dating applied to the same box-core samples produced significantly lower age estimates, ranging from ~600 ± 200 yrs to 1440 ± 270 yrs top-to-bottom, an improvement over the depth-constant ~2200 yrs TL ages. In two other cores closer to the Canada Glacier, IRSL ages from ~600 ± 200 yrs (top) to ~ 2900± 300 yrs (at depth) were measured. Not only are the IRSL ages a significant improvement over the TL results, but the near-core-top IRSL ages are also a dramatic improvement over the 14C results (~2.7 ka). IRSL dating has a demonstrated potential to supplant 14C dating for such antarctic lacustrine deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, M. J., 1985. Thermoluminescence Dating. Academic Press, N.Y., 351 pp.

    Google Scholar 

  • Aitken, M. J., 1998. An Introduction to Optical Dating, Oxford University Press, Oxford, 262 pp.

    Google Scholar 

  • Andersen, D. W., R. A. Wharton Jr. & S. W. Squyres, 1993. Terrigenous clastic sedimentation in antarctic Dry Valley lakes. In Green, W. J. & E. I. Freidmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Ant. Res. Ser., Am. Geophys. Un., Wash. D.C. 59: 71–81.

    Google Scholar 

  • Berger, G. W., 1985a. Thermoluminescence dating studies of rapidly deposited silts from south-central British Columbia. Can. J. Earth Sci. 22: 704–710.

    Google Scholar 

  • Berger, G. W., 1985b. Thermoluminescence dating applied to a thin winter varve of the Late Glacial South Thompson Silt, south-central British Columbia. Can. J. Earth Sci. 22: 1736–1739.

    Google Scholar 

  • Berger, G. W., 1988. Dating Quaternary events by luminescence. In Easterbrook, D. J. (ed.), Dating Quaternary sediments. Geological Society of America, Special Paper 227: 13–50.

  • Berger, G. W., 1990. Effectiveness of natural zeroing of the thermoluminescence in sediments. J. Geophys. Res. 95: 12,375–12,397.

    Google Scholar 

  • Berger, G. W., 1994. Thermoluminescence dating of sediments older than ~100 ka. Quat. Sci. Rev. 13: 445–455.

    Google Scholar 

  • Berger, G. W., R. A. Lockhart & J. Kuo, 1987. Regression and error analysis applied to the dose response curves in thermoluminescence dating. Nucl. Tracks Radiat. Meas. 13: 177–184.

    Google Scholar 

  • Berger, G. W., B. J. Pillans & A. S. Palmer, 1994. Test of thermoluminescence dating of loess from New Zealand and Alaska. Quat. Sci. Rev. 13: 309–333.

    Google Scholar 

  • Berkman, P. A. & S. L. Forman, 1996. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophys. Res. Lett. 23: 363–366.

    Google Scholar 

  • Bishop, J. L., C. Koeberl, C. Kralick, H. Fröschl, P. A. J. Englert, D. W. Andersen, C. M. Pieters & R. A. Wharton Jr., 1996. Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica: Implications for remote sensing of the Earth and Mars. J. Geophys. Res. 60: 765–785.

    Google Scholar 

  • DeMaster, D. J., R. B. Dunbar, L. I. Gordon, A. R. Leventer, J. M. Morrison, D. M. Nelson, C. A. Nittrouer & W. O. Smith Jr., 1992. Cycling and accumulation of biogenic silica and organic matter in high-latitude environments: the Ross Sea. Oceanography 5: 146–153.

    Google Scholar 

  • Domack, E. W., A. J. T. Jull, J. B. Anderson, T. W. Linick & C. R. Williams, 1989. Application of tandem accelerator massspectrometer dating to Late Pleistocene-Holocene sediments of the East Antarctic continental shelf. Quat. Res. 31: 277–287.

    Google Scholar 

  • Doran, P. T., 1996. Paleolimnology of Perennially Ice-covered Antarctic Oasis Lakes. Ph.D. Dissertation, University of Nevada, Reno.

  • Doran, P. T., R. A. Wharton Jr. & W. B. Lyons, 1994. Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolim. 10: 85–114.

    Google Scholar 

  • Doran, P. T., G. W. Berger, W. B. Lyons, R. A. Wharton Jr., M. L. Davisson, J. Southon & J. E. Dibb, 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 147: 223–239.

    Google Scholar 

  • Forman, S. L., 1990. Thermoluminescence properties of fiord sediments from Engelskbukta, western Spitsbergen, Svalbard: A new tool for deciphering depositional environment?. Sedimentology 37: 377–384.

    Google Scholar 

  • Gemmell, A. M. D., 1997. Fluctuations in the thermoluminescence signal of suspended sediment in an Alpine glacial meltwater stream. Quat. Sci. Rev. 16: 281–290.

    Google Scholar 

  • Gemmell, A. M. D., 1999. IRSL from fine-grained glaciofluvial sediment. Quat. Sci. Rev. 18: 207–215.

    Google Scholar 

  • Gordon, J. E. & D. D. Harkness, 1992. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: Implications for reservoir corrections in radiocarbon dating. Quat. Sci. Rev. 11: 697–708.

    Google Scholar 

  • Gore, D. B., 1997. Blanketing snow and ice: constraints on radiocarbon dating deglaciation in East Antarctic oases. Antarctic Sci. 9: 336–346.

    Google Scholar 

  • Huntley, D. J., 1985. On the zeroing of the thermoluminescence of sediments. Phys. Chem. Min. 12: 122–127.

    Google Scholar 

  • Huntley, D. J. & A. G. Wintle, 1981. The use of alpha scintillation counting for measuring Th-230 and Pa-231 contents of ocean sediments. Can. J. Earth Sci. 18: 419–432.

    Google Scholar 

  • Huntley, D. J., M. K. Nissen, J. Thompson & S. E. Calvert, 1986. An improved alpha scintillation counting method for determination of Th, U, Ra-226, Th-230 excess and Pa-231 excess in marine sediments. Can. J. Earth Sci. 23: 959–969.

    Google Scholar 

  • Huntley, D. J., G. W. Berger & S. G. E. Bowman, 1988. Thermoluminescence responses to alpha and beta irradiations, and age determination when the high dose response is non-linear. Radiat. Effects 105: 279–284.

    Google Scholar 

  • Krause, W. E., M. R. Krbetschek & W. Stolz, 1997. Dating of Quaternary lake sediments from the Shirmacher Oasis (east Antarctica) by infra-red stimulated luminescence (IRSL) detected at the wavelength of 560 nm. Quat. Sci. Rev. 16: 387–392.

    Google Scholar 

  • Krbetschek, M. R., U. Rieser, L. Zöller & J. Heinicke, 1994. Radioactive disequilibria in palaeodosimetric dating of sediments. Radiat. Meas. 23: 485–489.

    Google Scholar 

  • Lawrence, M. J. F. & C. H. Hendy, 1989. Carbonate deposition and the Ross Sea ice advance, Fryxell basin, Taylor Valley, Antarctica. N. Z. J. Geol. Geophys. 32: 267–277.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992. Spectral irradiance and biooptical properties in perennially ice-covered lakes of the dry valleys (McMurdo Sound, Antarctica). In Elliot, D. E. (ed.), Contributions to Antarctic Research III. Ant. Res. Ser., Am. Geophys. Un., Wash. D.C. 57: 1–14.

  • Lyons, W. B., S. K. Frape & K. A. Welch, 1999. History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data. Geology 27: 527–530.

    Google Scholar 

  • Lyons, W. B., S. W. Tyler, R. A. Wharton Jr., D. M. McKnight & B. H. Vaughn, 1998. A Late Holocene dessication of lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Sci. 10: 247–256.

    Google Scholar 

  • Melles, M., S. R. Verkulich & W.-D. Hermichen, 1994. Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Sci. 6: 375–378.

    Google Scholar 

  • Nedell, S. S., D. W. Andersen, S. W. Squyres & F. G. Love, 1987. Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34: 1093–1106.

    Google Scholar 

  • Ollerhead, J., D. J. Huntley & G. W. Berger, 1994. Luminescence dating of the Buctouche Spit, New Brunswick. Can. J. Earth Sci. 31: 523–531.

    Google Scholar 

  • Olley, J. M., A. Murray & R. Roberts, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat. Sci. Rev. 15: 751–760.

    Google Scholar 

  • Palmisano, A. C. & G. M. Simmons Jr., 1987. Spectral downwelling irradiance in an Antarctic lake. Polar Biol. 7:145–151.

    Google Scholar 

  • Rhodes, E. J. & R. M. Bailey, 1997. The effect of thermal transfer on the zeroing of the luminescence of quartz from recent glaciofluvial sediments. Quat. Sc. Rev. 16: 291–298.

    Google Scholar 

  • Schackman, M., 1994. Analysis of sediment and sedimentary processes in perennially ice-covered Lake Hoare, Antarctica. unpublished M.S. thesis. San José State University.

  • Simmons Jr., G. M., J. R. Vestal & R. A. Wharton Jr., 1993. Environmental regulators of microbial activity in continental antarctic lakes. In Green, W. J. & E. I. Freidmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Ant. Res. Ser., Am. Geophys. Un., Wash. D.C. 59: 165–195.

  • Spaulding, S. A., D. M. McKnight, E. F. Stoermer & P. T. Doran, 1997. Diatoms in sediments of perennially icecovered lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J. Paleolim. 17: 403–420.

    Google Scholar 

  • Stuiver, M., G. H. Denton, T. J. Hughes & J. L. Fastook, 1981. History of the marine ice sheet in west Antarctica during the last glaciation, a working hypothesis. In Denton, G. H. & T. H. Hughes (eds), The Last Great Ice Sheets. Wiley-Interscience, N.Y.: 319–436.

    Google Scholar 

  • Squyres, S. W., D. W. Andersen, S. S. Nedell & R. A. Wharton Jr., 1991. Lake Hoare, Antarctica: Sedimentation through a thick perennial ice cover. Sedimentology 38: 363–379.

    Google Scholar 

  • Tyler, S. W., P. G. Cook, A. Z. Butt, J. M. Thomas, P. T. Doran & W. B. Lyons, 1998. Evidence of deep circulation in two perennially ice-covered Antarctic lakes. Limnol.& Oceanog. 43: 625–635.

    Google Scholar 

  • Wand, U. & J. Perlt, 1999. Glacial boulders 'floating' on the ice cover of Lake Untersee, East Antarctica. Antarct. Sci. 11: 256–260.

    Google Scholar 

  • Zale, R. & W. Karlén, 1989. Lake sediment cores from the Antarctic Peninsula and surrounding islands. Geografiska Annal. 71A: 3–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, G., Doran, P. Luminescence-dating zeroing tests in Lake Hoare, Taylor Valley, Antarctica. Journal of Paleolimnology 25, 519–529 (2001). https://doi.org/10.1023/A:1011144502713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011144502713

Navigation