Skip to main content
Log in

Axonal transport of tubulin and actin

  • Published:
Journal of Neurocytology

Abstract

Axonal transport is responsible for supplying the axonal processes with proteins that are synthesized in the cell body. Among the proteins that are moved by this mechanism are tubulin and actin, two major components of the cytoskeleton. Observation of the movement of metabolically labeled tubulin and actin in-vivo has demonstrated that tubulin and actin transport are reduced in various diseases and with age, but transport is increased during axonal growth and regeneration. These metabolic studies have also raised questions about the underlying mechanisms of slow axonal transport such as: what is the polymerization state of tubulin and actin during transport, what motors and tracks are responsible for their movement down the axon, and how are the transport motors coupled to tubulin and actin during transport? Since experiments using metabolically labeled tubulin and actin have not effectively addressed these questions, a variety of new in-vitro fluorescent microscopy techniques have been devised to investigate these questions. These fluorescent microscopy experiments have suggested that tubulin can be transported in the unpolymerized soluble state and that such transport of soluble tubulin relies on the presence of formed microtubule tracks. It is not yet known what motor or motors are responsible for tubulin or actin transport in axons or how such a motor(s) might be coupled to such an abundant soluble cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHMAD, F. J. & BAAS, P. W. (1995) Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science 108, 2761-2769.

    Google Scholar 

  • AHMAD, F. J., ECHEVERRI, C. J., VALLEE, R. B. & BAAS, P. W. (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. Journal of Cell Biology 140, 391-401.

    Google Scholar 

  • AHMAD, F. J., JOSHI, H. C., CENTONZE, V. E. & BAAS, P. W. (1994) Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron 12, 271-280.

    Google Scholar 

  • ARCHER, D. R., WATSON, D. F. & GRIFFIN, J. W. (1994) Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion. Journal of Neurochemistry 62, 1119-1125.

    Google Scholar 

  • AXELROD, D., KOPPEL, D. E., SCHLESSINGER, J., ELSON, E. & W., W. W. (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal 16, 1055-1069.

    Google Scholar 

  • BAAS, P. W. & AHMAD, F. J. (1993) The transport properties of axonal microtubules establish their polarity orientation. Journal of Cell Biology 120, 1427-1437.

    Google Scholar 

  • BAMBURG, J. R., BRAY, D. & CHAPMAN, K.(1986) Assembly of microtubules at the tip of growing axons. Nature 321, 788-790.

    Google Scholar 

  • BERNSTEIN, B. W. & BAMBURG, J. R. (1992) Actin in emerging neurites is recruited from a monomer pool. Molecular Neurobiology 6, 95-106.

    Google Scholar 

  • BLACK, M. M. & LASEK, R. J. (1979) Axonal transport of actin: slow component B is the principal source of actin for the axon. Brain Research 171, 401-413.

    Google Scholar 

  • BLACK, M. M. & LASEK, R. J. (1980) Slow components of axonal transport: two cytoskeletal networks. Journal of Cell Biology 86, 616-623.

    Google Scholar 

  • BRADY, S. T., PFISTER, K. K. & BLOOM, G. S. (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proceedings of the National Academy of Sciences USA 87, 1061-1065.

    Google Scholar 

  • BROWN, A., SLAUGHTER, T. & BLACK, M. M. (1992) Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. Journal of Cell Biology 119, 867-882.

    Google Scholar 

  • BROWN, A., LI, Y., SLAUGHTER, T. & BLACK, M. M. (1993) Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. Journal of Cell Science 104, 339-352.

    Google Scholar 

  • BROWN, B. A., NIXON, R. A. & MAROTTA, C. A. (1982) Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons. Journal of Cell Biology 94, 159-164.

    Google Scholar 

  • CANCALON, P. F. (1988) Axonal transport in the garfish optic nerve: comparison with the olfactory system. Journal of Neurochemistry 51, 266-276.

    Google Scholar 

  • CHANG, S., RODIONOV, V. I., BORISY, G. G. & POPOV, S. V. (1998) Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. Journal of Neuroscience 18, 821-829.

    Google Scholar 

  • CHANG, S., SVITKINA, T. M., BORISY, G. G. & POPOV, S. V. (1999) Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nature Cell Biology 1, 399-403.

    Google Scholar 

  • COLLARD, J. F., COTE, F. & JULIEN, J. P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61-64.

    Google Scholar 

  • DE WAEGH, S. & BRADY, S. T. (1990) Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. Journal of Neuroscience 10, 1855-1865.

    Google Scholar 

  • DE WAEGH, S. M. & BRADY, S. T. (1991) Local control of axonal properties by Schwann cells: neurofilaments and axonal transport in homologous and heterologous nerve grafts. Journal of Neuroscience Research 30, 201-212.

    Google Scholar 

  • DENOULET, P., FILLIATREAU, G., DE NECHAUD, B., GROS, F. & DI GIAMBERARDINO, L. (1989) Differential axonal transport of isotubulins in the motor axons of the rat sciatic nerve. Journal of Cell Biology 108, 965-971.

    Google Scholar 

  • DENT, E. W., CALLAWAY, J. L., SZEBENYI, G., BAAS, P. W. & KALIL, K. (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. Journal of Neuroscience 19, 8894-8908.

    Google Scholar 

  • DILLMAN, J. F., DABNEY, L. P., KARKI, S., PASCHAL, B. M., HOLZBAUR, E. L. & PFISTER, K. K. (1996a) Functional analysis of dynactin and cytoplasmic dynein in slow axonal transport. Journal of Neuroscience 16, 6742-6752.

    Google Scholar 

  • DILLMAN, J. F., 3RD, DABNEY, L. P. & PFISTER, K. K. (1996b) Cytoplasmic dynein is associated with slow axonal transport. Proceedings of the National Academy of Sciences USA 93, 141-144.

    Google Scholar 

  • DRAKE, P. F., OBLINGER, M. M. & LASEK, R. J. (1985) Synthesis and fast axonal transport of proteins in the isolated Aplysia nervous system. Brain Research 332, 47-57.

    Google Scholar 

  • DROZ, B. & LEBLOND, C. P. (1962) Migration of proteins along the axons of the sciatic nerve. Science 137, 1047-1048.

    Google Scholar 

  • DROZ, B. & LEBLOND, C. P. (1963) Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radiography. Journal of Comparative Neurology 121, 325-346.

    Google Scholar 

  • EDSON, K. J., LIM, S. S., BORISY, G. G. & LETOURNEAU, P. C. (1993) FRAP analysis of the stability of the microtubule population along the neurites of chick sensory neurons. Cell Motility and the Cytoskeleton 25, 59-72.

    Google Scholar 

  • FILLIATREAU, G. & DI GIAMBERARDINO, L. (1982) Quantitative analysis of axonal transport of cytoskeletal proteins in chicken oculomotor nerve. Journal of Neurochemistry 39, 1033-1037.

    Google Scholar 

  • FUNAKOSHI, T., TAKEDA, S. & HIROKAWA, N. (1996) Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis. Journal of Cell Biology 133, 1347-1353.

    Google Scholar 

  • GALBRAITH, J. A., REESE, T. S., SCHLIEF, M. S. & GALLANT, P. E. (1999) Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proceedings of the National Academy of Sciences USA 96, 11589-11594.

    Google Scholar 

  • GALLO, G. & LETOURNEAU, P. C. (1999) Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. Journal of Neuroscience 19, 3860-3873.

    Google Scholar 

  • GRAFSTEIN, B., MCEWEN, B. S. & SHELANSKI, M. L. (1970) Axonal transport of neurotubule protein. Nature 227, 289-290.

    Google Scholar 

  • GRAFSTEIN, B. & FORMAN, D. S. (1980) Intracellular transport in neurons. Physiological Reviews 60, 1167-183.

    Google Scholar 

  • HAMMERSCHLAG, R., CYR, J. L. & BRADY, S. T. (1994) Axonal transport and the neuronal cytoskeleton. (edited by SEIGEL, G.J, AGRANOFF, B. W., ALBERS R.W. & MOLINOFF P.B.) In Basic Neurochemistry New York: Raven Press.

    Google Scholar 

  • HEACOCK, A. M. & AGRANOFF, B. W. (1982) Protein synthesis and transport in the regenerating goldfish visual system. Neurochemistry Research 7, 771-788.

    Google Scholar 

  • HIROKAWA, N. (1993) Axonal transport and the cytoskeleton Current Opinions in Neurobiology 3, 724-731.

    Google Scholar 

  • HIROKAWA, N. (1997) The mechanisms of fast and slow transport in neurons: identification and characterization Tubulin and actin transport 909 of the new kinesin superfamily motors. Current Opinions in Neurobiology 7, 605-614.

    Google Scholar 

  • HOFFMAN, P. N. & LASEK, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. Journal of Cell Biology 66, 351-366.

    Google Scholar 

  • HOFFMAN, P. N. & LASEK, R. J. (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Research 202, 317-333.

    Google Scholar 

  • HOFFMAN, P. N., LOPATA, M. A., WATSON, D. F. & LUDUENA, R. F. (1992) Axonal transport of class II and III beta-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons. Journal of Cell Biology 119, 595-604.

    Google Scholar 

  • HOFFMAN, P. N. & LUDUENA, R. F. (1996) Changes in the isotype composition of beta-tubulin delivered to regenerating sensory axons by slow axonal transport. Brain Research 742, 329-333.

    Google Scholar 

  • JACOB, J. M. & MCQUARRIE, I. G. (1991) Axotomy accelerates slow component B of axonal transport. Journal of Neurobiology 22, 570-582.

    Google Scholar 

  • KARLSSON, J. O. & SJOSTRAND, J. (1969) The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Research 13, 617-619.

    Google Scholar 

  • KARLSSON, J. O. & SJOSTRAND, J. (1971) Transport of microtubular protein in axons of retinal ganglion cells. Journal of Neurochemistry 18, 975-982.

    Google Scholar 

  • KEITH, C. H. (1987) Slow transport of tubulin in the neurites of differentiated PC12 cells. Science 235, 337-339.

    Google Scholar 

  • KEITH, C. H. & FARMER, M. A. (1993) Microtubule behavior in PC12 neurites: variable results obtained with photobleach technology. Cell Motility and the Cytoskeleton 25, 345-357.

    Google Scholar 

  • KOMIYA, Y. (1983) Recovery of slow axonal transport after colchicine treatment in rat sciatic nerve. Journal of Neurobiology 14, 87-91.

    Google Scholar 

  • KOMIYA, Y. (1992) Changes of fast axonal transport by taxol injected subepineurally into the rat sciatic nerve. Journal of Neuroscience Research 14, 159-165.

    Google Scholar 

  • KOMIYA, Y. & KUROKAWA, M. (1980) Preferential blockade of the tubulin transport by colchicine. Brain Research 190, 505-516.

    Google Scholar 

  • KOMIYA, Y. & TASHIRO, T. (1988) Effects of taxol on slow and fast axonal transport. Cell Motility and the Cytoskeleton 11, 151-156.

    Google Scholar 

  • LASEK, R. J. (1986) Polymer sliding in axons. Journal of Cell Science Supplement 5, 161-179.

    Google Scholar 

  • LASEK, R. J. & BRADY, S. T. (1982) The structural hypothesis of axonal transport: two classes of moving elements (edited by WEISS: D. G.) In Axoplasmic Transport, Berlin, Heidelburg, New York: Springer-Verlag.

    Google Scholar 

  • LASEK, R. J., GARNER, J. A. & BRADY, S. T. (1984) Axonal transport of the cytoplasmic matrix. Journal of Cell Biology 99, 212s-221s.

    Google Scholar 

  • LASEK, R. J., PAGGI, P. & KATZ, M. J. (1992) Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons. Journal of Cell Biology 117, 607-616.

    Google Scholar 

  • LI, Y. & BLACK, M. M. (1996) Microtubule assembly and turnover in growing axons. Journal of Neuroscience 16, 531-544.

    Google Scholar 

  • LIM, S. S., SAMMAK, P. J. & BORISY, G. G. (1989) Progressive and spatially differentiated stability of microtubules in developing neuronal cells. Journal of Cell Biology 109, 253-263.

    Google Scholar 

  • LIM, S. S., EDSON, K. J., LETOURNEAU, P. C. & BORISY, G. G. (1990) A test of microtubule translocation during neurite elongation. Journal of Cell Biology 111, 123-130.

    Google Scholar 

  • LUDUENA, R. F. (1998) Multiple forms of tubulin: different gene products and covalent modifications. International Review of Cytology 178, 207-275.

    Google Scholar 

  • MCKERRACHER, L., VIDAL-SANZ, M. & AGUAYO, A. J. (1990) Slow transport rates of cytoskeletal proteins change during regeneration of axotomized retinal neurons in adult rats. Journal of Neuroscience 10, 641-648.

    Google Scholar 

  • MCKERRACHER, L. & HIRSCHEIMER, A. (1992) Slow transport of the cytoskeleton after axonal injury. Journal of Neurobiology 23, 568-578.

    Google Scholar 

  • MCQUARRIE, I. G. & LASEK, R. J. (1989) Transport of cytoskeletal elements from parent axons into regenerating daughter axons. Journal of Neuroscience 9, 436-446.

    Google Scholar 

  • MCQUARRIE, I. G. & JACOB, J. M. (1991) Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush. Journal of Comparative Neurology 305, 139-147.

    Google Scholar 

  • MCQUARRIE, I. G., BRADY, S. T. & LASEK, R. J. (1986) Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat. Journal of Neuroscience 6, 1593-1605.

    Google Scholar 

  • MCQUARRIE, I. G., BRADY, S. T. & LASEK, R. J. (1989) Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiology of Aging 10, 359-365.

    Google Scholar 

  • MEDORI, R., AUTILIO-GAMBETTI, L., MONACO, S. & GAMBETTI, P. (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proceedings of the National Academy of Sciences USA 82, 7716-7720.

    Google Scholar 

  • MEDORI, R., AUTILIO-GAMBETTI, L., JENICH, H. & GAMBETTI, P. (1988a) Changes in axon size and slow axonal transport are related in experimental diabetic neuropathy. Neurology 38, 597-601.

    Google Scholar 

  • MEDORI, R., JENICH, H., AUTILIO-GAMBETTI, L. & GAMBETTI, P. (1988b) Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. Journal of Neuroscience 8, 1814-1821.

    Google Scholar 

  • MERCKEN, M., FISCHER, I., K INAMIDE, L. S., YUAN, A., BAMBURG, J. R. & BRAY, J. J. (1996) Slow axonal transport of soluble actin with actin depolymerizing factor, cofilin, and profilin suggests actin moves in an unassembled form. Journal of Neurochemistry 67, 1225-1234.

    Google Scholar 

  • MITCHISON, T. J. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. Journal of Cell Biology 109, 637-652.

    Google Scholar 

  • MITSUMOTO, H. & GAMBETTI, P. (1986) Impaired slow axonal transport in wobbler mouse motor neuron disease. Annals of Neurology 19, 36-43.

    Google Scholar 

  • MORI, H., KOMIYA, Y. & KUROKAWA, M. (1979) Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. Journal of Cell Biology 82, 174-184.

    Google Scholar 

  • MORRIS, J. R. & LASEK, R. J. (1984) Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm. Journal of Cell Biology 98, 2064-2076.

    Google Scholar 

  • MOSKOWITZ, P. F. & OBLINGER, M. M. (1995) Sensory neurons selectively upregulate synthesis and transport of the beta III-tubulin protein during axonal regeneration. Journal of Neuroscience 15, 1545-1555.

    Google Scholar 

  • NIXON, R. A. & LOGVINENKO, K. B. (1986) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. Journal of Cell Biology 102, 647-659.

    Google Scholar 

  • NIXON, R. A. (1992) Slow axonal transport. Current Opinions in Cell Biology 4, 8-14.

    Google Scholar 

  • OBLINGER, M. M. (1988) Biochemical composition and dynamics of the axonal cytoskeleton in the corticospinal system of the adult hamster. Metabolic Brain Disorders 3</del>, 49-65.

    Google Scholar 

  • OCHS, S. (1975) A unitary concept of axoplasmic transport based on the transport filament hypothesis. In Recent Advances in Myology (edited by BRADLEY, W.G. et al.) pp. 189-194. Amsterdam: Excerpta Medica.

    Google Scholar 

  • OKABE, S. & HIROKAWA, N. (1988) Microtubule dynamics in nerve cells: Analysis using microinjection of biotinylated tubulin into PC12 cells. Journal of Cell Biology 107, 651-664.

    Google Scholar 

  • OKABE, S. & HIROKAWA, N. (1990) Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479-482.

    Google Scholar 

  • OKABE, S. & HIROKAWA, N. (1992) Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. Journal of Cell Biology 117, 105-120.

    Google Scholar 

  • OKABE, S. & HIROKAWA, N. (1993) Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. Journal of Cell Biology 120, 1177-1186.

    Google Scholar 

  • PERRY, G. W., BURMEISTER, D. W. & GRAFSTEIN, B. (1985) Changes in protein content of goldfish optic nerve during degeneration and regeneration following nerve crush. Journal of Neurochemistry 44, 1142-1151.

    Google Scholar 

  • PIORO, E. P. & MITSUMOTO, H. (1995) Animal models of ALS. Clinical Neuroscience 3, 375-385.

    Google Scholar 

  • PRAHLAD, V., HELFAND, B. T., LANGFORD, G. M., VALE, R. D. & D., G. R. (2000) Fast transport of neurofilament protein along microtubules in squid axoplasm. Journal of Cell Science 113, 3939-3946.

    Google Scholar 

  • RAMÓN Y CAJAL, S. (1928) Degeneration and Regeneration in the Nervous System. Cambridge: Oxford University Press.

    Google Scholar 

  • REINSCH, S. S., MITCHISON, T. J. & KIRSCHNER, M. (1991) Microtubule polymer assembly and transport during axonal elongation. Journal of Cell Biology 115, 365-379.

    Google Scholar 

  • ROY, S., COFFEE, P., SMITH, G., LIEM, R. K., BRADY, S. T. & BLACK, M. M. (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. Journal of Neuroscience 20, 6849-6861.

    Google Scholar 

  • SABRY, J., O'CONNOR, T. P. & KIRSCHNER, M. (1995) Axonal transport of tubulin in Ti1 pioneer neurons in situ. Cell 14, 1247-1256.

    Google Scholar 

  • SAMMAK, P. J. & BORISY, G. G. (1988) Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motility and the Cytoskeleton 10, 237-245.

    Google Scholar 

  • SANDERS, M. C. & WANG, Y. (1991) Assembly of actincontaining cortx occurs at distal regions of growing neurites in PC12 cells. Journal of Cell Science 100, 771-780.

    Google Scholar 

  • SAXTON, W. M., STEMPLE, D. L., LESLIE, R. J., SALMON, E. D., ZAVORTINK, M. & MCINTOSH, J. R. (1984) Tubulin dynamics in cultured mammalian cells. Journal of Cell Biology 99, 2175-2186.

    Google Scholar 

  • SLAUGHTER, T., WANG, J. & BLACK, M. M. (1997) Microtubule transport from the cell body into axons of growing neurons. Journal of Neuroscience 17, 5807-5819.

    Google Scholar 

  • SMITH, B. H. (1971) Neuroplasmic transport in the nervous system of the cockroach Periplaneta americana. Journal of Neurobiology 2, 107-118.

    Google Scholar 

  • STEIN, S. A., KIRKPATRICK, L. L., SHANKLIN, D. R., ADAMS, P. M. & BRADY, S. T. (1991a) Hypothyroidism reduces the rate of slow component A (SCa) axonal transport and the amount of transported tubulin in the hyt/hyt mouse optic nerve. Journal of Neuroscience Research 28, 121-133.

    Google Scholar 

  • STEIN, S. A., MCINTIRE, D. D., KIRKPATRICK, L. L., ADAMS, P. M. & BRADY, S. T. (1991b) Hypothyroidism selectively reduces the rate and amount of transport for specific SCb proteins in the hyt/hyt mouse optic nerve. Journal of Neuroscience Research 30, 28-41.

    Google Scholar 

  • TAKEDA, S., FUNAKOSHI, T. & HIROKAWA, N. (1995) Tubulin dynamics in neuronal axons of living zebrafish embryos. Cell 14, 1257-1264.

    Google Scholar 

  • TANAKA, E. M. & KIRSCHNER, M. (1991) Microtubule behavior in the growth cones of living neurons during elongation. Journal of Cell Biology 115, 345-363.

    Google Scholar 

  • TANNER, S. L., STORM, E. E. & BITTNER, G. D. (1995) Protein transport in intact and severed (anucleate) crayfish giant axons. Journal of Neurochemistry 64, 1491-1501.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1983) Subunit composition specific to axonally transported tubulin. Neuroscience 9, 943-950.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1991a) Maturation and aging of the axonal cytoskeleton: biochemical analysis of transported tubulin. Journal of Neuroscience Research 30, 192-200.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1991b) Changes in organization and axonal transport of cytoskeletal proteins during regeneration. Journal of Neurochemistry 56, 1557-1563.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1992) Organization and slow axonal transport of cytoskeletal proteins under normal and regenerating conditions. Molecular Neurobiology 6, 301-332.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1994) Impairment of cytoskeletal protein transport due to aging or beta, Tubulin and actin transport 911 beta'-iminodipropionitrile intoxication in the rat sciatic nerve. Gerontology 40, 36-45.

    Google Scholar 

  • TASHIRO, T., KUROKAWA, M. & KOMIYA, Y. (1984) Two populations of axonally transported tubulin differentiated by their interactions with neurofilaments. Journal of Neurochemistry 43, 1220-1225.

    Google Scholar 

  • TERADA, S., KINJO, M. & HIROKAWA, N. (2000) Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103, 141-155.

    Google Scholar 

  • TERASAKI, M., SCHMIDEK, A., GALBRAITH, J. A., GALLANT, P. E. & REESE, T. S. (1995) Transport of cytoskeletal elements in the squid giant axon. Proceedings of the National Academy of Sciences (USA) 92, 11500-11503.

    Google Scholar 

  • TYTELL, M., BLACK, M. M., GARNER, J. A. & LASEK, R. J. (1981) Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science 214, 179-181.

    Google Scholar 

  • VIGERS, G. P. A., COUE, M. & MCINTOSH, J. R. (1988) Fluorescent microtubules break up under illumination. Journal of Cell Biology 107, 1011-1024.

    Google Scholar 

  • WANG, J., YU, W., BAAS, P. W. & BLACK, M. M. (1996) Microtubule assembly in growing dendrites. Journal of Neuroscience 16, 6085-6078.

    Google Scholar 

  • WANG, L., HO, C. H., SUN, D., LIEN, R. K. H. & BROWN, A. (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biology 2, 137-141.

    Google Scholar 

  • WATERMAN-STORER, C. M. & SALMON, E. D. (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover is associated with microtubule breakage and treadmilling. Journal of Cell Biology 139, 417-434.

    Google Scholar 

  • WATERMAN-STORER, C. M. & SALMON, E. D. (1998) How microtubules get fluorescent speckles. Biophysical Journal 75, 2059-2069.

    Google Scholar 

  • WATSON, D. F., HOFFMAN, P. N. & GRIFFIN, J. W. (1990) The cold stability of microtubules increases during axonal maturation. Journal of Neuroscience 10, 3344-3352.

    Google Scholar 

  • WEISS, P. A. & HISCOE, H. B. (1948) Experiments on the mechanism of nerve growth. Journal of Experimental Zoology 107, 315-396.

    Google Scholar 

  • WILLARD, M., WISEMAN, M., LEVINE, J. & SKENE, P. (1979) Axonal transport of actin in rabbit retinal ganglion cells. Journal of Cell Biology 81, 581-591.

    Google Scholar 

  • WILLIAMSON, T. L. & CLEVELAND, D. W. (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neuroscience 2, 50-56.

    Google Scholar 

  • YU, W., CENTONZE, V. E., AHMAD, F. J. & BAAS, P. W. (1993) Microtubule nucleation and release from the neuronal centrosome. Journal of Cell Biology 122, 349-359.

    Google Scholar 

  • YU, W., SCHWEI, M. J. & BAAS, P. W. (1996) Microtubule transport and assembly during axon growth. Journal of Cell Biology 133, 151-157.

    Google Scholar 

  • ZIMMERMANN, H., TASHIRO, T., KOMIYA, Y. & KUROKAWA, M. (1989) Axonal transport studied in a single vertebrate neuron: the giant electromotor neuron of the electric catfish, Malapterurus electricus. Neuroscience Research 6, 248-256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galbraith, J.A., Gallant, P.E. Axonal transport of tubulin and actin. J Neurocytol 29, 889–911 (2000). https://doi.org/10.1023/A:1010903710160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010903710160

Keywords

Navigation