Skip to main content
Log in

Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol

  • Published:
Journal of Neurocytology

Abstract

Acute damage to axons is manifested as a breach in their membranes, ion exchange across the compromised region, local depolarization, and sometimes conduction block. This condition can worsen leading to axotomy. Using a novel recording chamber, we demonstrate immediate arrest of this process by application of polyethylene glycol (PEG) to a severe compression of guinea pig spinal cord. Variable magnitudes of compound actions potentials (CAPs) were rapidly restored in 100% of the PEG-treated spinal cords. Using a dye exclusion test, in which horseradish peroxidase is imbibed by damaged axons, we have shown that the physiological recovery produced by polyethylene glycol was associated with sealing of compromised axolemmas. Injured axons readily imbibe horseradish peroxidase—but not following sealing of their membranes. The density of nerve fibers taking up the marker is significantly reduced following polyethylene glycol treatment compared to a control group. We further show that all axons—independent of their caliber—are equally susceptible to the compression injury and equally susceptible to polyethylene glycol mediated repair. Thus, polyethylene glycol—induced reversal of permeabilization by rapid membrane sealing is likely the basis for physiological recovery in crushed spinal cords. We discuss the clinical importance of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHKONG, Q. F., DESMAZES, J. P., GEORGESCAULD, D. & LUCY, J. A. (1987) Movements of fluorescent probes in the mechanism of cell fusion induced by polyethylene glycol. Journal of Cell Science 88, 389–98.

    PubMed  Google Scholar 

  • ASANO, T., SHI, R. & BLIGHT, A. R. (1995) Horseradish proxidase used to examine the distribution of axonal damage in spinal cord compression injury in vitro. Journal of Neurotrauma 12, 993, Abstract.

    Google Scholar 

  • BLIGHT, A. R., MCGINNIS, M. E. & BORGENS, R. B. (1990) Cutaneus trunci muscle reflex of the guinea pig. Journal of Comparative Neurology 296, 614–633.

    PubMed  Google Scholar 

  • BORGENS, R. B., BLIGHT, A. R. & MURPHY, D. J. (1986) Axonal regeneration in spinal cord injury: A perspective and new technique. Journal of Comparative Neurology 250, 157–167.

    PubMed  Google Scholar 

  • BORGENS, R. B., TOOMBS, J. P., BLIGHT, A. R., MCGINNIS, M. E., BAUER, M. S., WIDMER, W. R. & COOK, J. R. Jr. (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J. Restorative Neurology and Neurosci. 5, 305–322.

    Google Scholar 

  • BORGENS, R. B. & SHI, R. (2000) Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB Journal 14, 27–35.

    PubMed  Google Scholar 

  • BORGENS, R. B., TOOMBS, J. P., BREUR, G., WIDMER, W. R., WATER, D., HARBATH, A. M., MARCH, P. & ADAMS, L. G. (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. Journal of Neurotrama 16, 639–657.

    Google Scholar 

  • DAVIDSON, R. L., O'MALLEY, K. A. & WHEELER, T. B. (1976) Induction of mammalian somatic cell hybridization by polyethylene glycol. Somatic Cell and Molecular Genetics 2, 271–280.

    Google Scholar 

  • DIMITRIJEVIC, M. R. (1995) Clinical aspects of traumatic injury to central nervous system axons. In The Axon (edited by WAXMAN, S. G., KOCSIS, J. D. & STYS, P. K.) pp. 669–679. New York: Oxford UP.

    Google Scholar 

  • FEHLINGS, M. & TATOR, C. (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Experimental Neurology 132, 123–134.

    PubMed  Google Scholar 

  • GRIFFIN, J. W., GEORGE, E. B., HSIEH, S. & GLASS, J. D. (1995) Axonal degeneration and disorders of the axonal cytoskeleton. In The Axon (edited by WAXMAN, S. G., KOCSIS, J. D. & STYS, P. K.) pp. 375–390. New York: Oxford UP.

    Google Scholar 

  • GUTH, L. (1969) Trophic effects of vertebrate neurons. Neuroscience Research Program Bulletin 7, 1–73.

    Google Scholar 

  • HANNIG, J., YU, J., BECKETT, M., WEICHSELBAUM, R. & LEE, R. C. (1999) Poloxamine 1107 sealing of radiopermeabilized erythrocyte membranes. International Journal of Radiation Biology 75, 379–385.

    PubMed  Google Scholar 

  • HONMOU, O. & YOUNG, W. (1995) Traumatic injury to the spinal axons. In The Axon (edited by WAXMAN, S. G., KOCSIS, J. D. & STYS, P. K), pp. 480–503. New York: Oxford UP.

    Google Scholar 

  • LEE, J. & LENTZ, B. R. (1997) Evolution of lipid structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251–6259.

    PubMed  Google Scholar 

  • LENTZ, B. R. (1994) Induced membrane fusion; Potential mechanism and relation to cell fusion events. Chemistry and Physics of Lipids 73, 91–106.

    PubMed  Google Scholar 

  • MALMGREN, L. & OLSSON, L. (1977) A sensitive histochemical method for light and electron microscopic demonstration of horseradish peroxidase. Journal of Histochemistry and Cytochemistry 25, 1280–1283.

    PubMed  Google Scholar 

  • MAXWELL, W. L. (1996) Histopathological changes at central nodes of ranvier after stretch-injury. Microscopy Research and Technique 34, 522–535.

    PubMed  Google Scholar 

  • MAXWELL, W. L. & GRAHAM, D. I. (1997) Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers. Journal of Neurotrauma 14, 603–614.

    PubMed  Google Scholar 

  • MAXWELL, W. L., WATT, C., GRAHAM, D. I. & GENNARELLI, T. A. (1993) Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates. Acta Neuropathologica 86, 136–144.

    PubMed  Google Scholar 

  • MORIARTY, L. J., DUERSTOCK, B. S., BAJAJ, C. L., LIN, K. & BORGENS, R. B. (1998) Two and three dimensional computer graphic evaluation of the subacute spinal cord injury. Journal of The Neurological Sciences 155, 121–137.

    PubMed  Google Scholar 

  • NAKAJIMA, N. & IKADA, Y. (1994) Fusogenic activity of various water-soluble polymers. Journal of Biomaterials Science, Polymer Edition 6, 751–9.

    Google Scholar 

  • O'LAGUE, P. H. & HUNTTER, S. L. (1980) Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture. Proceedings of the National Academy of Sciences USA 77, 1701–1705.

    Google Scholar 

  • PADANLAM, J. T., BISCHOF, J. C., CRAVALHO, E. G., TOMPKINS, R. G., YARMUSH, M. L. & TONER, M. (1994) Effectiveness of Poloxamer 188 in arresting calcein leakage from thermally damaged isolated skeletal muscle cells. Annals of the New York Academy of Sciences 92, 111–123.

    Google Scholar 

  • PALMER, J. S., CROMIE, W. J. & LEE, R. C. (1998) Surfactant administration reduces testicular ischemiareprefusion injury. Journal of Urology 159, 2136–2139.

    PubMed  Google Scholar 

  • SHI, R., ASANO, T. & BLIGHT, A. R. (1996) Sucrose gap recording of membranes resealing in mammalian spinal cord axons. Society for Neuroscience Abstracts 22, 1185.

    Google Scholar 

  • SHI, R. & BLIGHT, A. R. (1996) Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. Journal of Neurophysiology 76, 1572–1580.

    PubMed  Google Scholar 

  • SHI, R., ASANO, T., VINING, N. C. & BLIGHT, A. R. (1997) m-Calpain dependence of membrane sealing in mammalian spinal cord axons. Society for Neuroscience Abstracts 108, 16.

    Google Scholar 

  • SHI, R. & BLIGHT, A. R. (1997) Differential effects of low and high concentrations of 4-Aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 77, 553–562.

    PubMed  Google Scholar 

  • SHI, R. & BORGENS, R. B. (1999) Acute repair of crushed guinea pig spinal cord by polyethylene glycol. Journal of Neurophysiology 81, 2406–2414.

    PubMed  Google Scholar 

  • SHI, R., BORGENS, R. B. & BLIGHT, A. R. (1999) Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol. Journal of Neurotrauma 16, 727–738.

    PubMed  Google Scholar 

  • XIE, X. & BARRETT, J. N. (1991) Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca2+-triggered protease activity and cytoskeletal disassembly. Journal of Neuroscience 11, 3257–3267.

    PubMed  Google Scholar 

  • YAWO, H. & KUNO, M. (1985) Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. Journal of Neuroscience 5, 1626–1632.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, R., Borgens, R.B. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29, 633–643 (2000). https://doi.org/10.1023/A:1010879219775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010879219775

Keywords

Navigation