Skip to main content
Log in

Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Polycrystalline silicon is used in microelectronic and microelectromechanical devices for which thermal design is important. This work measures the in-plane thermal conductivities of free-standing undoped polycrystalline layers between 20 and 300 K. The layers have a thickness of 1 μm, and the measurements are performed using steady-state Joule heating and electrical-resistance thermometry in patterned aluminum microbridges. The layer thermal conductivities are found to depend strongly on the details of the deposition process through the grain size distribution, which is investigated using atomic force microscopy and transmission electron microscopy. The room-temperature thermal conductivity of as-grown polycrystalline silicon is found to be 13.8 W·m-1·K-1and that of amorphous recrystallized polycrystalline silicon is 22 W·m-1·K-1, which is almost an order of magnitude less than that of single-crystal silicon. The maximum thermal conductivities of both samples occur at higher temperatures than in pure single-crystalline silicon layers of the same thickness. The data are interpreted using the approximate solution to the Boltzmann transport equation in the relaxation time approximation together with Matthiessen's rule. These measurements contribute to the understanding of the relative importance of phonon scattering on grain and layer boundaries in polysilicon films and provide data relevant for the design of micromachined structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed. (Kluwer, Boston, 1998), and references therein.

    Google Scholar 

  2. K. E. Goodson, Annu. Rev. Heat Transfer 6:323 (1995).

    Google Scholar 

  3. M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71:1798 (1997).

    Google Scholar 

  4. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer 120:30 (1998).

    Google Scholar 

  5. Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74:3005 (1999).

    Google Scholar 

  6. J. W. Tringe, Ph.D. thesis (Stanford University, Palo Alto, CA, 1999).

    Google Scholar 

  7. C. H. Mastrangelo and R. S. Muller, Sensors Mater. 3:133 (1988).

    Google Scholar 

  8. Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, J. Appl. Phys. 63:1442 (1988).

    Google Scholar 

  9. D. Moser and H. Baltes, Sensors Actuators A 37-38:33 (1993).

    Google Scholar 

  10. O. M. Paul, J. Korvink, and H. Baltes, Sensors Actuators A 41-42:161 (1994).

    Google Scholar 

  11. L. Wei, M. Vaudin, C. S. Hwang, G. White, J. Xu, and A. J. Steckl, J. Mater. Res. 10:1889 (1995).

    Google Scholar 

  12. M. von Arx and P. O. Baltes, J. Microelectromech. Syst. 9:136 (2000).

    Google Scholar 

  13. K. Kurabayashi, M. Asheghi, M. Touzelbaev, and K. E. Goodson, J. Microelectromech. Syst. 8:180 (1999).

    Google Scholar 

  14. M. Asheghi, K. Kurabayashi, R. Kasnavi, J. Plummer, and K. E. Goodson, submitted for publication.

  15. J. Callaway, Phys. Rev. 113:1046 (1959).

    Google Scholar 

  16. R. Berman, Thermal Conduction in Solids(Oxford University Press, Oxford, 1976).

    Google Scholar 

  17. J. M. Ziman, Electrons and Phonons(Oxford University Press, Oxford, 1960).

    Google Scholar 

  18. M. G. Holland, Phys. Rev. 132:2461 (1963).

    Google Scholar 

  19. M. A. Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Phys. Rev. B Cond. Matter 56:9431 (1997).

    Google Scholar 

  20. J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, and C. J. Robinson, Phys. Rev. B Cond. Matter 50:3702 (1994).

    Google Scholar 

  21. J. E. Graebner, Diamond Relat. Mater. 5:1366 (1996).

    Google Scholar 

  22. K. E. Goodson, O. W. Käding, M. Rösler, and R. Zachai, J. Appl. Phys. 77:1385 (1995).

    Google Scholar 

  23. K. E. Goodson, J. Heat Transfer 118:279 (1996).

    Google Scholar 

  24. K. Plamann and D. Fournier, Phys. Stat. Sol. A 154:351 (1996).

    Google Scholar 

  25. H. Verhoeven, E. Boettger, A. Floter, H. Reiss, and R. Zachai, Diamond Relat. Mater. 6:298 (1997).

    Google Scholar 

  26. M. N. Touzelbaev and K. E. Goodson, Diamond Relat. Mater. 7:1 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Uma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uma, S., McConnell, A.D., Asheghi, M. et al. Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers. International Journal of Thermophysics 22, 605–616 (2001). https://doi.org/10.1023/A:1010791302387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010791302387

Navigation