Skip to main content
Log in

Functional Anatomy of Speech Perception and Speech Production: Psycholinguistic Implications

  • Published:
Journal of Psycholinguistic Research Aims and scope Submit manuscript

Abstract

This paper presents evidence for a new model of the functional anatomy of speech/language (Hickok & Poeppel, 2000) which has, at its core, three central claims: (1) Neural systems supporting the perception of sublexical aspects of speech are essentially bilaterally organized in posterior superior temporal lobe regions; (2) neural systems supporting the production of phonemic aspects of speech comprise a network of predominately left hemisphere systems which includes not only frontal regions, but also superior temporal lobe regions; and (3) the neural systems supporting speech perception and production partially overlap in left superior temporal lobe. This model, which postulates nonidentical but partially overlapping systems involved in the perception and production of speech, explains why psycho- and neurolinguistic evidence is mixed regarding the question of whether input and output phonological systems involve a common network or distinct networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albert, M. L., & Bear, D. (1974). Time to understand; a case study of word deafness with reference to the role of time in auditory comprehension. Brain, 97, 373–384.

    PubMed  Google Scholar 

  • Allport, D. A. (1984). Speech production and comprehension: One lexicon or two? In W. Prinz & A. F. Sanders (Eds.), Cognition and motor processes (pp. 209–228). Berlin: Springer-Verlag.

    Google Scholar 

  • Anderson, J. M., Gilmore, R., Roper, S., Crosson, B., Bauer, R. M., Nadeau, S., Beversdorf, D. Q., Cibula, J., Rogish III, M., Kortencamp, S., Hughes, J. D., Gonzalez Rothi, L. J., & Heilman, K. M. (1999). Conduction aphasia and the arcuate fasciculus: A reexamination of the Wernicke-Geschwind model. Brain and Language, 70, 1–12.

    PubMed  Google Scholar 

  • Bachman, D. L., & Albert, M. L. (1988). Auditory comprehension in aphasia. In F. Boller, & J. Grafman (Eds.), Handbook of neuropsychology, Vol.1(pp. 281–306). New York: Elsevier.

    Google Scholar 

  • Baker, E., Blumsteim, S. E., & Goodglass, H. (1981). Interaction between phonological and semantic factors in auditory comprehension. Neuropsychologia,19, 1–15.

    PubMed  Google Scholar 

  • Barde, L. F., Baynes, K., Gage, N., & Hickok, G. (2000). “Phonemic” perception in aphasia and in the isolated right hemisphere. Cognitive Neuroscience Society Annual Meeting Program, 2000, 43.

    Google Scholar 

  • Binder, J. R., Rao, S. M., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., Bandettini, P. A., Wong, E. C., Estkowski, L. D., Goldstein, M. D., Haughton, V. M., & Hyde, J. S. (1994). Functional magnetic resonance imaging of human auditory cortex. Annals of Neurology, 35, 662–672.

    PubMed  Google Scholar 

  • Blumstein, S. (1995). The neurobiology of the sound structure of language. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 913–929). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T., Gaillard, W., & Theodore, W. (1995). Regional cerebral blood flow during object naming and word reading. Human Brain Mapping, 3, 93–106.

    Google Scholar 

  • Buchman, A. S., Garron, D. C., Trost-Cardamone, J. E., Wichter, M. D., & Schwartz, M. (1986). Word deafness: One hundred years later. Journal of Neurology, Neurosurgery, and Psychiatry, 49, 489–499.

    Google Scholar 

  • Buchsbaum, B., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, in press.

  • Buckner, R. L., Bandettini, P. A., O'Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., & Rosen, B. R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 93, 14878–14883.

    Google Scholar 

  • Coleman, J. (1998). Cognitive reality and the phonological lexicon: A review. Journal of Neurolinguistics, 11(3), 295–320.

    Google Scholar 

  • Damasio, A. R. (1992). Aphasia. New England Journal of Medicine, 326, 531–539.

    PubMed  Google Scholar 

  • Damasio, H., & Damasio, A. R. (1980). The anatomical basis of conduction aphasia. Brain, 103, 337–350.

    PubMed  Google Scholar 

  • Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104, 801–838.

    PubMed  Google Scholar 

  • Dhankhar, A., Wexler, B. E., Fulbright, R. K., Halwes, T., Blamire, A. M., & Shulman, R. G. (1997). Functional magnetic resonance imaging assessment of the human brain auditory cortex response to increasing word presentation rates. Journal of Neurophysiology, 77, 476–483.

    PubMed  Google Scholar 

  • Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161.

    PubMed  Google Scholar 

  • Gage, N., Poeppel, D., Roberts, T. P. L., & Hickok, G. (1998). Auditory evoked M100 reflects onset acoustics of speech sounds. Brain Research, 814, 236–239.

    PubMed  Google Scholar 

  • Geschwind, N. (1965). Disconnextion syndromes in animals and man. Brain, 88, 237–294, 585–644.

    PubMed  Google Scholar 

  • Goodglass, H. (1992). Diagnosis of conduction aphasia. In S. E. Kohn (Ed.), Conduction aphasia (pp. 39–49). Hillsdale, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hickok, G. (2000). Speech perception, conduction aphasia, and the functional neuroanatomy of language. In Y. Grodzinsky, L. Shapiro, & D. Swinney (Eds.), Language and the brain (pp. 87–104). San Diego: Academic Press.

    Google Scholar 

  • Hickok, G., Erhard, P., Kassubek, J., Helms-Tillery, A. K., Naeve-Velguth, S., Strupp, J. P., Strick, P. L., & Ugurbil, K. (2000). A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia. Neuroscience Letters, 287, 156–160.

    PubMed  Google Scholar 

  • Hickok, G., Love, T., Swinney, D., Wong, E. C., & Buxton, R. B. (1997). Functional MR imaging of auditorily presented words: A single-item presentation paradigm. Brain and Language, 58, 197–201.

    PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4, 131–138.

    PubMed  Google Scholar 

  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 845–865). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuriki, S., Okita, Y., & Hirata, Y. (1995). Source analysis of magnetic field responses from the human auditory cortex elicited by short speech sounds. Experimental Brain Research, 104, 144–152.

    Google Scholar 

  • Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10, 553–567.

    PubMed  Google Scholar 

  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral & Brain Sciences,22(1), 1–75.

    Google Scholar 

  • MacKay, D. G. (1987). The organization of perception and action: a theory for language and other cognitive skills. New York: Springer-Verlag.

    Google Scholar 

  • Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Salamon, G., Dehaene, S., Cohen, L., & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5, 467–479.

    Google Scholar 

  • McGlone, J. (1984). Speech comprehension after unilateral injection of sodium amytal. Brain and Language, 22, 150–157.

    PubMed  Google Scholar 

  • Papathanassiou, D., Etard, O., Mellet, E., Zago, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2000). A common language network for comprehension and production: A contribution to the definition of language epicenters with PET. Neuroimage, 11, 347–357.

    PubMed  Google Scholar 

  • Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J., & Evans, A. C. (1996). Modulation of cerebral blood flow in the human auditory cortex during speech: Role of motor-to-sensory discharges. European Journal of Neuroscience, 8, 2236–2246.

    PubMed  Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature London, 331, 585–589.

    PubMed  Google Scholar 

  • Poeppel, D., Yellin, E., Phillips, C., Roberts, T. P. L., Rowley, H., Wexler, K., & Marantz, A. (1996). Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. Cognitive Brain Research, 4, 231–242.

    PubMed  Google Scholar 

  • Price, C. J., Wise, R. J. S., Warburton, E. A., Moore, C. J., Howard, D., Patterson, K., Frackowiak, R. S. J., & Friston, K. J. (1996). Hearing and saying: The functional neuroanatomy of auditory word processing. Brain, 119, 919–931.

    PubMed  Google Scholar 

  • Schlosser, M. J., Aoyagi, N., Fulbright, R. K., Gore, J. C., & McCarthy, G. (1998). Functional MRI studies of auditory comprehension. Human Brain Mapping, 6, 1–13.

    PubMed  Google Scholar 

  • Shelton, J. R., & Caramazza, A. (1999). Deficits in lexical and semantic processing: Implications for models of normal language. Psychonomic Bulletin & Review, 6, 5–27.

    Google Scholar 

  • Wada, J., & Rasmussen, T. (1960). Intracarotid injection of sodium amytal for the lateralization of cerbral speech dominance. Journal of Neurosurgery, 17, 266–282.

    Google Scholar 

  • Wilshire, C. E., & McCarthy, R. A. (1996). Experimental investigations of an impairement in phonological encoding. Cognitive Neuropsychology, 13, 1059–1098.

    Google Scholar 

  • Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E., & Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114(Pt 4)(5), 1803–17.

    PubMed  Google Scholar 

  • Wise R. J. S., Greene, J., B#x00FC;chel, C., & Scott, S. K. (1999). Brain regions involved in articulation. The Lancet, 353, 1057–1061.

    Google Scholar 

  • Yaqub, B. A., Gascon, G. G., Alnosha, M., & Whitaker, H. (1988). APure wood deafness (acquired verbal auditory agnosia) in an Arabic speaking patientS. Brain, 111, 457–466.

    PubMed  Google Scholar 

  • Zaidel, E. (1985). Language in the right hemisphere. In D. F. Benson & E. Zaidel (Eds.), The dual brain: Hemispheric specialization in humans (pp. 205–231). New York: Guilford Press.

    Google Scholar 

  • Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6, 21–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickok, G. Functional Anatomy of Speech Perception and Speech Production: Psycholinguistic Implications. J Psycholinguist Res 30, 225–235 (2001). https://doi.org/10.1023/A:1010486816667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010486816667

Navigation