Skip to main content
Log in

Selective Internal Oxidation of the Noble Metal-Rich Intermetallic Compound, BaAg5

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Although the internal oxidation of noble metal-base solid solutions (particularly Ag-base alloys) has been examined extensively, no detailed studies have been reported on the exclusive internal oxidation of noble metal-rich intermetallic compounds. In this paper, the internal oxidation of a silver-rich compound, BaAg5, has been examined at 400°C in pure O2. Under these conditions, the BaAg5 was converted into a mixture of submicron barium-oxide particles in a silver matrix. Image analysis of the oxide content, and chemical analysis with an electron microprobe, revealed the absence of preferential barium segregation to the oxidized zone. Silver nodules were detected on the specimen surface, which was consistent with outward silver migration to relieve the stress associated with internal-oxide formation. Although the oxidation zone thickened at a parabolic rate, the measured rate was higher than expected from the Wagner model. The internal oxidation of BaAg5 is demonstrated to be a relatively simple means of synthesizing an intimate mixture of BaO2 and Ag for potential use in gas-phase catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Wagner, Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  2. I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, Germany, 1989), pp. 12, 148, 149.

    Google Scholar 

  3. T. A. Ramanarayanan and R. A. Rapp, Met. Trans. 3, 3239 (1972).

    Google Scholar 

  4. W. Eichenauer and G. Mueller, Z. Metallkd. 53, 321 (1962).

    Google Scholar 

  5. R. A. Rapp, Corrosion 21, 382 (1965).

    Google Scholar 

  6. J. L. Meijering, Advan. Mater. Res. 5, 1 (1971).

    Google Scholar 

  7. J. L. Meijering and M. J. Druyvesteyn, Philips Res. Rept. 2, 81, 260 (1947).

    Google Scholar 

  8. D. L. Douglass, Oxid. Met. 44, 81 (1995).

    Google Scholar 

  9. D. L. Douglass, J. Met. 43, 74 (1991).

    Google Scholar 

  10. J. E. Verfurth and R. A. Rapp, Trans. Amer. Inst. Minerals Metall. Eng. 230, 1310 (1964).

    Google Scholar 

  11. B. M. Semega, L. Charrin, A. Combe, and J. Aride, Phil. Mag. A 66, 1139 (1992).

    Google Scholar 

  12. L. Charrin, A. Combe, and J. Cabane, Oxid. Met. 37, 65 (1992).

    Google Scholar 

  13. A. Combe and J. Cabane, Oxid. Met. 21, 21 (1984).

    Google Scholar 

  14. G. Boehm and M. Kahlweit, Acta Metallur. 12, 641 (1964).

    Google Scholar 

  15. H. Spengler, Metallurgia 20, 721 (1966).

    Google Scholar 

  16. H. Spengler, Metallurgia 17, 710 (1963).

    Google Scholar 

  17. J. Takada, Y. Tomii, N. Yoshida, M. Sasaki, and M. Koiwa, Oxid. Met. 37, 13 (1992).

    Google Scholar 

  18. A. Verma and T. R. Anantharaman, Bull. Mater. Sci. 14, 1 (1991).

  19. W. Segeth, D. O. Boerma, L. Niesen, J. R. Heringa, and A. Van Veen, Z. Phys. B Condens. Matter 73, 43 (1988).

    Google Scholar 

  20. T. Igarashi, Y. Amano, and Y. Kodama, Nippon Kinzoku Gakkaishi 44, 501 (1980).

    Google Scholar 

  21. Y. S. Shen and R. H. Krock, Met. Trans. 5, 312 (1974).

    Google Scholar 

  22. G. Elssner and E. Gebhardt, Z. Metallkd. 60, 922 (1969).

    Google Scholar 

  23. H. W. Pickering, J. Electrochem. Soc. 119, 641 (1972).

    Google Scholar 

  24. F. H. Stott, G. C. Wood, D. P. Whittle, B. D. Bastow, Y. Shida, and A. Martiney-Villafane, Solid State Ionics 12, 365 (1984).

    Google Scholar 

  25. R. A. Outlaw, D. Wu, M. R. Davidson, and G. B. Hoflund, J. Vac. Sci. Technol. A 10, 1497 (1992).

    Google Scholar 

  26. H. Yamashita, Y. Machida, and A. Tomita, Appl. Catal. A General 79, 203 (1991).

    Google Scholar 

  27. D. Dissanayake, J. H. Lunsford, and M. P. Rosynek, J. Catal. 143, 286 (1993).

    Google Scholar 

  28. J. H. Lunsford, X. Yang, K. Haller, J. Laane, G. Mestl, and H. Knozinger, J. Phys. Chem. 97, 13810 (1993).

    Google Scholar 

  29. K. Otsuka, A. A. Said, K. Jinno, and T. Komatsu, Chem. Lett. p. 77 (1987).

  30. H. T. Spath, K. Mayer, and K. Torkar, J. Catal. 35, 100 (1974).

    Google Scholar 

  31. H. T. Spath, G. S. Tomazic, H. Wurm, and K. Torkar, J. Catal. 26, 18 (1972).

    Google Scholar 

  32. JCPDS Card File; Cards No. 28–156 for BaAg5, 4–783 for Ag, 7–233 for BaO3 22–1056 for BaO, 45–1471 for BaCO3, 22–1054 for α-Ba(OH)2, 44–585 for β-Ba(OH)2, 27–1402 for Si, and 4–836 for Cu.

  33. G. Bruzzone, M. Ferretti, and F. Merlo, J. Less-Common Met. 128, 259 (1987).

    Google Scholar 

  34. I. L. Aptekar, G. A. Emel'chenko, and A. V. Kosenko, Solid State Commun. 87, 227 (1993).

    Google Scholar 

  35. H. J. Schmutzler, M. M. Antony, and K. H. Sandhage, J. Amer. Ceram. Soc. 7, 721 (1994).

    Google Scholar 

  36. R. S. Roth, C. J. Rawn, and M. D. Hill, NIST Special Publication 804 (National Institute of Standards and Technology, Gaithersburg, MD, 1991), p. 225.

    Google Scholar 

  37. S. Guruswamy, S. M. Park, J. P. Hirth, and R. A. Rapp, Oxid. Met. 26, 77 (1986).

    Google Scholar 

  38. J. R. Mackert, Jr., R. D. Ringle, and C. W. Fairhurst, J. Dental Res. 62, 1229 (1983).

    Google Scholar 

  39. K. H. Sandhage, J. Electrochem. Soc. 139, 1661 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilayannur, S., Sandhage, K.H. Selective Internal Oxidation of the Noble Metal-Rich Intermetallic Compound, BaAg5. Oxidation of Metals 55, 87–103 (2001). https://doi.org/10.1023/A:1010377225959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010377225959

Navigation