Skip to main content
Log in

Enhancement and Validation of the IDES Orbital Debris Environment Model

  • Published:
Space Debris

Abstract

Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • T.D. Bess. Mass Distribution of Orbiting Man-Made Space Debris, NASA Report No. TN D-8108. NASA Langley Research Center, USA, 1975.

    Google Scholar 

  • G.E. Cook. Luni-Solar Perturbations of the Orbit of an Earth Satellite, Royal Aircraft Establishment Technical Note No. G.W. 582. Royal Aircraft Establishment, UK, 1961.

    Google Scholar 

  • R.M. Goldstein, S.J. Goldstein and D.J. Kessler. Radar Observations of Space Debris. Planetary Space Science, 46(8): 1007-1013, 1998.

    Google Scholar 

  • H. Henize and J. Stanley. Optical Observations of Orbital Debris. In AIAA/NASA/DOD Orbital Debris Conference, Paper AIAA-90-1340, Baltimore, MD, April 16-19, 1990.

    Google Scholar 

  • F. H¨orz, R.P. Bernhard, T.H. See and D.E. Brownlee. Natural and Orbital Debris Particles on LDEF's Trailing and Forward-Facing Surfaces. In LDEF-69 Months in Space, Third Post-Retrieval Symposium, NASA CP 3275 Part 1, pages 415-429, 1993.

  • A. Jackson, P. Eichler and R. Reynolds. The Historical Contribution of Solid Rocket Motors to the One Centimeter Debris Population. In Proceedings of the Second European Conference on Space Debris, ESA SP-393, pp. 279-284, May 1997.

  • R. Jehn. Fragmentation Models. ESOC/MAS Working Paper 312. ESA/ESOC, Darmstadt, 1990.

    Google Scholar 

  • R. Jehn. Modelling Debris Clouds. PhD Thesis. Shaker Verlag, Germany, 1996.

    Google Scholar 

  • D.J. Kessler, M.J. Matney, R.C. Reynolds, R.P. Bernhard, E.G. Stansbery, N.L. Johnson, A.E. Potter and P.D. Anz-Meador. The Search for a Previously Unknown Source of Orbital Debris: The Possibility of a Coolant Leak in Radar Ocean Reconnaissance Satellites. NASA Report No. JSC-27737, NASA Johnson Space Center, Houston TX, USA, 1997.

    Google Scholar 

  • D.G. King-Hele. Satellite Orbits in an Atmosphere: Theory and Applications. Blackie, 1987.

  • H. Klinkrad. Collision Risk Analysis for Low Earth Orbits. In Advances in Space Research, 13(8): 177-186, 1993.

    Google Scholar 

  • R.A. Madler. Sensitivity of the Near-Earth Orbital Debris Environment to Satellite Fragmentation Parameters. PhD Dissertation. University of Colorado, USA, 1994.

    Google Scholar 

  • C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer and R. Stevens. Software Engineering Standards. Prentice Hall, Hemel Hempstead, UK, 1994.

    Google Scholar 

  • D. McKnight, R. Maher and L. Nagl. Refined Algorithms for Structural Breakup Due To Hypervelocity Impact. In Hypervelocity Impact Society Symposium, Sante Fe, NM, Oct. 16-20, 1994.

    Google Scholar 

  • G.W. Ojakangas, P. Anz-Meador and R. Reynolds. Orbital Debris Environment. AIAA Space Programs and Technologies Conference, Paper AIAA 90-3863, Huntsville AL, September 1990.

    Google Scholar 

  • G.W. Ojakangas, B.J. Anderson and P.D. Anz-Meador. Solid-Rocket-Motor Contribution to Large-Particle Orbital Debris Population. Journal of Spacecraft and Rockets, 33(4), July-August 1996.

  • R. Reynolds. Documentation of Program EVOLVE: A Numerical Model to Compute Projections of the Man-Made Debris Environment. System Planning Corporation Report OD91-002-U-CSP, 1991.

  • R. Reynolds and M. Matney. A Comparison of Haystack Radar Measurements withEVOLVEDebris Environment Predictions. In 46th International Astronautical Congress, Paper IAA-95-IAA.6.3.08, Oslo, Norway, October 1995.

    Google Scholar 

  • R.C. Reynolds. A Review of Orbital Debris Environment Modelling at NASA/JSC. In AIAA/NASA/DOD Orbital Debris Conference, Paper AIAA-90-1355, Baltimore, MD, April 16-19, 1990.

    Google Scholar 

  • A. Rossi, A. Cordelli, C. Pardini, L. Anslemo and P. Farinella. Modelling the Space Debris Evolution: Two New Computer Codes. In Advances in the Astronautical Sciences-Space Flight Mechanics 1995, pages 1217-1231, 1995.

  • A.E. Roy. Orbital Motion, Third Edition, 1988.

  • T.J. Settecerri, E.G. Stansbery and J.N. Opiela. Henderson, R., Haystack Radar Measurements of the Orbital Debris Environment; 1994-1996. NASA Report No. JSC-27842, NASA Johnson Space Center, Houston TX, USA, 1997.

    Google Scholar 

  • Space Station Freedom Program Office. Space Station Natural Environment Definition for Design, Revision A, SSP 30425, Reston, VA, 1991.

    Google Scholar 

  • R. Sridharan, W. Beavers, R. Lambour, E.M. Gaposchkin, J. Kansky and E. Stansbery. Remote Sensing and Characterization of Anomalous Debris. In Proceedings of the Second European Conference on Space Debris, ESA SP-393, pages 239-246, May 1997.

  • E.G. Stansbery, D.J. Kessler and M. Matney. Recent Results of Orbital Debris from the Haystack Radar Measurements. In 33rd Aerospace Science Meeting and Exhibit, Paper AIAA 95-0664, 9-12 January, 1995.

  • S.-Y. Su and D.J. Kessler. Contribution of Explosions and Future Collision Fragments to the Orbital Debris Environment. Advances in Space Research, 10(2): 25-34, 1985.

    Google Scholar 

  • R.Walker, S. Hauptmann, R. Crowther, H. Stokes and A. Cant. Introducing IDES: Characterising the Orbital Debris Environment in the Past, Present and Future. In Advances in the Astronautical Sciences-Space Flight Mechanics 1996, Vol. 93, Part I, pages 201-220, 1996.

    Google Scholar 

  • R.Walker, R. Crowther, V. Marsh, P.H. Stokes and G.G. Swinerd. A Comparison of IDES Model Predictions with Debris Measurement Data. In Proceedings of the Second European Conference on Space Debris, ESA SP-393, pages 239-246, May 1997.

  • C.Wiedemann, J. Bendisch, H. Klinkrad, H. Krag, P.Wegener and D. Rex. Debris Modeling of Liquid Metal Droplets Released by RORSATs. In 49th International Astronautical Congress, Paper IAA-98-IAA.6.3.03, Melbourne, Australia, September 28-October 2, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, R., Stokes, P., Wilkinson, J. et al. Enhancement and Validation of the IDES Orbital Debris Environment Model. Space Debris 1, 1–19 (1999). https://doi.org/10.1023/A:1010036330544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010036330544

Navigation