Skip to main content
Log in

Fragmentation profiles for real and simulated landscapes

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

When a natural landscape is represented by a series of categorical raster maps of varying resolution, a multiresolution characterization of spatial pattern can be obtained in which entropy is computed at each resolution conditional on the next coarser resolution. The series of entropy values is plotted as a function of resolution, resulting in a multiresolution profile of fragmentation pattern in the landscape. If a categorical raster map is available at a single resolution only, a series of degraded maps at increasingly coarser resolutions is generated and the fragmentation profile is computed for this series. An algorithm has been developed for obtaining the profile directly from the single resolution map without having to generate and store the coarser resolution maps. A hierarchical stochastic model is described for simulating categorical raster maps and the fragmentation profile of the generating process is obtained in terms of the model parameters. These “process” profiles provide benchmarks for assessing empirical profiles obtained from raster maps of actual landscapes. Methods of the paper are applied to several watersheds of Pennsylvania using landcover maps derived from satellite imagery. These examples indicate that characteristic landscape types induce characteristic features in their fragmentation profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basharin, G.P. (1959) On a statistical estimate for the entropy of a sequence of independent random variables. Theory of Probability and its Applications, 4, 333–36.

    Google Scholar 

  • Benson, B.J. and MacKenzie, M.D. (1995) Effects of sensor spatial resolution on landscape structure parameters. Landscape Ecology, 10, 113–20.

    Google Scholar 

  • Colwell, R.K. (1974) Predictability, constancy, and contingency of periodic phenomena. Ecology, 55, 1148–253.

    Google Scholar 

  • Costanza, R. and Maxwell, T. (1994) Resolution and predictability: An approach to the scaling problem. Landscape Ecology, 9, 47–57.

    Google Scholar 

  • Johnson, G.D., Myers, W.L., and Patil, G.P. (1999) Stochastic generating models for simulating hierarchically structured multi-cover landscapes. Landscape Ecology, 14, 413–521.

    Google Scholar 

  • Johnson, G.D. and Patil, G.P. (1998) Quantitative multiresolution characterization of landscape patterns for assessing the status of ecosystem health in watershed management areas. Ecosystem Health, 4, 177–287.

    Google Scholar 

  • Johnson, G.D., Tempelman, A.K., and Patil, G.P. (1995) Fractal based methods in ecology: a review for analysis at multiple spatial scales. Coenoses, 10, 123–231.

    Google Scholar 

  • Kotliar, N.B. and Wiens, J.A. (1990) Multiple scales of patchiness and patch structure: A hierarchical framework for the study of heterogeneity. Oikos, 59, 253–360.

    Google Scholar 

  • Levin, S. (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943–2067.

    Google Scholar 

  • O'Neill, R.V., Gardner, R.H., and Turner, M.G. (1992) A hierarchical neutral model for landscape analysis. Landscape Ecology, 7, 55–61.

    Google Scholar 

  • O'Neill, R.V., Johnson, A.R., and King, A.W. (1989) A hierarchical framework for the analysis of scale. Landscape Ecology, 3, 193–205.

    Google Scholar 

  • Patil, G.P. and Taillie, C.T. (1979) An overview of diversity. In Statistical Ecology, Vol. 6, Ecological Diversity in Theory and Practice, Grassle, J.F., Patil, G.P., Smith, W., and Taillie, C. (eds), International Co-operative Publishing House, Fairland, Maryland.

    Google Scholar 

  • Wiens, J.A. (1995) Landscape mosaics and ecological theory. In Mosaic Landscapes and Ecological Processes, Hansson, L., Fahrig, L., and Merriam, G. (eds), Chapman and Hall, London, pp. 1–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, G.D., Myers, W.L., Patil, G.P. et al. Fragmentation profiles for real and simulated landscapes. Environmental and Ecological Statistics 8, 5–20 (2001). https://doi.org/10.1023/A:1009651914734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009651914734

Navigation