Skip to main content
Log in

Selenium metabolism in Escherichia coli

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Escherichia coli will reduce selenite (SeO 3 2- ) andselenate (SeO 4 2- ) to elemental selenium Se 0 . Seleniumwill also become incorporated intoproteins as part of the amino acids selenocysteine or selenomethionine.The reaction of selenitewith glutathione produces selenodiglutathione (GS-Se-GS). Selenodiglutathioneand itssubsequent reduction to glutathioselenol (GS-SeH) are likely the key intermediatesin the possiblemetabolic fates of selenium. This review presents the possible pathwaysinvolving selenium in E. coli. Identification of intermediates and potentialprocesses from uptake of the toxic oxyanions through to theirdetoxification will assist us inunderstanding the complexities of metalloid oxyanion metabolism in thesebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avazeri C, Pommier J, Blasco F, Giordano G, Vermeglio A. 1995 In: Mathis P, ed. Photosynthesis: From Light to Biosphere. Dordrecht, Boston, London: 423-426.

  • Avazeri C, Turner RJ, Pommier J, et al. 1997 Tellurite reductace activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to telluite. Microbiology 143, 1181-1189.

    Google Scholar 

  • Bayer ME, Bayer MH, Lunn CA, Pigiet V. 1987. Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli. J Bacteriol 169, 2659-2666.

    Google Scholar 

  • Björnstedt M, Kumar S, Holmgren A. 1992 Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem 267, 8030-8034.

    Google Scholar 

  • Björnstedt M, Kumar S, Holmgren A. 1995 Selenite and selenodiglutathione: reactions with thioredoxin systems. Meth Enzymol 252, 209-219.

    Google Scholar 

  • Blarzino C, Coccia R, Pensa B, Cini C, DeMarco C. 1994 Selenomethionine as substrate for glutamine transaminase. Biochem Mol Biol Int 32, 79-86.

    Google Scholar 

  • Böck A, Sawers G. 1996 Fermentation. In: Neidhardt FC, ed. Escherichia coli & Salmonella, Cellular & Molecular Biology. Washington: ASM Press; 272-273.

    Google Scholar 

  • Böck A, Forchhammer K, Heider J, et al. 1991 Selenocysteine, the 21st amino acid. Mol Microbiol 5, 515-520.

    Google Scholar 

  • Brown SB, Turner RJ, Roche RS, Stevenson KJ. 1987 Spectoscopic characterization of thioredoxin covalently modified with monofunctional organoarsenical reagents. Biochemistry 26, 863-871.

    Google Scholar 

  • Chocat P, Esake N, Nakamura T, Tanaka H, Soda K. 1983. Microbial distribution of selenocysteine lyase. J Bacteriol 156, 455-457.

    Google Scholar 

  • Doran JW 1982. Microorganisms and the biological cycling of selenium. Adv Microbiol Ecol 6, 1-32.

    Google Scholar 

  • Fahey RC, Brown WC, Adams WB, Worsham MB 1978 Occurrence of glutathione in bacteria. J Bacteriol 133, 1126-1129.

    Google Scholar 

  • Fimmel AL, Loughlin RE. 1977 Isolation and characterization of cysK mutants of Escherichia coli. J Gen Microbiol 103, 37-43.

    Google Scholar 

  • Ganther HE. 1968 Selenotrisulfides. Formation by the reaction of thiols with selenious acid. Biochemistry 8, 2898-2905.

    Google Scholar 

  • Gerrard TL, Telford JN, Williams HH 1974 Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119, 1057-1060.

    Google Scholar 

  • Heider J, Böck A. 1993 Selenium metabolism in microorganisms. Adv Microbiol Physiol 35, 71-109.

    Google Scholar 

  • Kice JL, Lee TWS, Pan S. 1980 Mechanism of the reaction of thiols with selenite. J Am Chem Soc 102, 4448-4455.

    Google Scholar 

  • Kice JL, Wilson DM, Espinola JM. 1991 Oxidation of Bis(tert-butylthi) selenide at low temperatures: Search for a Bis(alkylthio) selenoxide. J Org Chem 56, 3520-3524.

    Google Scholar 

  • Kramer GF, Ames BN 1988 Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res 201 , 169-180.

    Google Scholar 

  • Kredich NM 1996 Biosynthesis of cysteine. In: Neidhardt FC, ed. Escherichia coli & Salmonella, Cellular & Molecular Biology. Washington: ASM Press; 514-527.

    Google Scholar 

  • Kumar S, Björnstedt M, Holmgren A. 1992 Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207, 435-439.

    Google Scholar 

  • LaRossa RA 1996 Mutant selections linking physiology, inhibitors, and genotypes. In: Neidhardt FC, ed. Escherichia coli & Salmonella, Cellular & Molecular Biology. Washington: ASM Press; 2527-2587.

    Google Scholar 

  • McFall E, Newman EB. 1996 Amino acids as carbon sources. In: Neidhardt FC, ed. Escherichia coli & Salmonella, Cellular & Molecular Biology. Washington: ASM Press; 366-367.

    Google Scholar 

  • Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N 1997 Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulferase activities. J Biol Chem 272, 22417-22424.

    Google Scholar 

  • Milne JB, Lorusso L, Lear W, Charlebois R 1994 The bioremediation of Se-containing effluents. Reduction of Se by Escherichia coli. Proceedings of Selenium Tellurium Development Association 5th International Symposium, Brussels.

  • Missiakas D, Raina S. 1997 Protein folding in the bacterial periplasm. J Bacteriol 179, 2465-2471.

    Google Scholar 

  • Painter EP 1941 The chemistry and toxicity of selenium compounds with special reference to the selenium problem. Chem Rev 28, 179-213.

    Google Scholar 

  • Richardson DJ, Bennett B, Berks BC, et al. 1997 The nitrate reductases of Paracoccus denitrificans. Anaerobic Metabolism, Electron Transfer Systems and Regulation, Marseille, France.

  • Sandholm M, Sipponen P. 1973 Formation of unstable selenite-glutathione complexes in vitro. Arch Biochem Biophys 155, 120-124.

    Google Scholar 

  • Scala J, Williams HH. 1962 Formation of unstable selenite toxicity by methionine in Escherichia coli. Arch Biochem Biophys 99 363-368.

    Google Scholar 

  • Shamberger RJ. 1985 The genotoxicity of selenium. Mutat Res 154, 29-48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R.J., Weiner, J.H. & Taylor, D.E. Selenium metabolism in Escherichia coli. Biometals 11, 223–227 (1998). https://doi.org/10.1023/A:1009290213301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009290213301

Navigation