Skip to main content
Log in

Membrane Potential Fluctuations Determine the Precision of Spike Timing and Synchronous Activity: A Model Study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

It is much debated on what time scale information is encoded by neuronal spike activity. With a phenomenological model that transforms time-dependent membrane potential fluctuations into spike trains, we investigate constraints for the timing of spikes and for synchronous activity of neurons with common input. The model of spike generation has a variable threshold that depends on the time elapsed since the previous action potential and on the preceding membrane potential changes. To ensure that the model operates in a biologically meaningful range, the model was adjusted to fit the responses of a fly visual interneuron to motion stimuli. The dependence of spike timing on the membrane potential dynamics was analyzed. Fast membrane potential fluctuations are needed to trigger spikes with a high temporal precision. Slow fluctuations lead to spike activity with a rate about proportional to the membrane potential. Thus, for a given level of stochastic input, the frequency range of membrane potential fluctuations induced by a stimulus determines whether a neuron can use a rate code or a temporal code. The relationship between the steepness of membrane potential fluctuations and the timing of spikes has also implications for synchronous activity in neurons with common input. Fast membrane potential changes must be shared by the neurons to produce synchronous activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso JM, Usrey W, Reid R (1996) Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815-819.

    Google Scholar 

  • Bair W (1999) Spike timing in the mammalian visual system. Curr. Opin. Neurobiol. 9:447-453.

    Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8:1185-1202.

    Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. PNAS, USA 94:5411-5416.

    Google Scholar 

  • Bialek W, Rieke F (1992) Reliability and information transmission in spiking neurons. TINS 15:428-434.

    Google Scholar 

  • Britten K, Shadlen M, Newsome W, Movshon J (1993) Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10:1157-1169.

    Google Scholar 

  • Brivanlou I, Warland D, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527-539.

    Google Scholar 

  • Brody C (1999) Correlations without synchrony. Neural Comput. 11:1537-1551.

    Google Scholar 

  • Buračas G, Zador A, DeWeese M, Albright T (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:956-969.

    Google Scholar 

  • Calvin W, Stevens C (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31:574-587.

    Google Scholar 

  • Carr C, Friedmann M (1999) Evolution of time coding systems. Neural Comput. 11:1-20.

    Google Scholar 

  • Cecchi G, Sigman M, Alonso JM, Martinez L, Chialvo D, Magnasco M (2000) Noise in neurons is message-dependent. Proc. Natl. Acad. Sci. USA 97:5557-5561.

    Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences. Proc. R. Soc. Lond. B 234:379-414.

    Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement sensitive neuron. Phil. Trans. R. Soc. Lond. B 348:321-340.

    Google Scholar 

  • de Ruyter van Steveninck R, Borst A, Bialek W (2000) Real-time encoding of motion: Answerable questions and questionable answers from the fly's visual system. In: Zanker JM, Zeil J, eds. Visual Motion. Springer, Heidelberg (in press).

    Google Scholar 

  • Ebbinghaus C, Diesmann M, Rotter S, Aertsen A (1997) The neural firing threshold: Can I help U? In: Elsner N, Wässle H, eds. Göttingen Neurobiology Report 1997. Proceedings of the 25th G¨ottingen Neurobiology Conference 1997. Thieme, Stuttgart p. 624.

    Google Scholar 

  • Eckhorn R, Reitboeck H, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput. 2:293-307.

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J, eds. Visual Motion and Its Role in the Stabilization of Gaze. Elsevier, Amsterdam. pp. 53-77.

    Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the fly system of the fly. Biol. Cybern. 56: 69-87.

    Google Scholar 

  • Egelhaaf M, Warzecha, A-K (1999) Encoding of motion in real time by the fly visual system. Curr. Opin. Neurobiol. 9:454-460.

    Google Scholar 

  • Gerstner W, van Hemmen L (1992) Associative memory in a network of "spiking" neurons. Network 3:139-164.

    Google Scholar 

  • Gestri G, Mastebroek H, Zaagman W (1980) Stochastic constancy, variability and adaptation of spike generation: Performance of a giant neuron in the visual system of the fly. Biol. Cybern. 38:31-40.

    Google Scholar 

  • Haag J, Borst A (1996) Amplifications of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639-641.

    Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17:4809-4819.

    Google Scholar 

  • Haag J, Borst A (1998) Active membrane properties and signal encoding in graded potential neurons. J. Neurosci. 18:7972-7986.

    Google Scholar 

  • Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J. Comp. Neurosci. 7:213-234.

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 74:49-70.

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46:67-79.

    Google Scholar 

  • Heck D, Rotter S, Aertsen A (1993) Spike generation in cortical neurons: Probabilistic threshold function shows intrinsic and long-lasting dynamics. In: Aertsen A, ed. Brain Theory. Elsevier, Amsterdam. pp. 241-249.

    Google Scholar 

  • Heiligenberg W (1991) Neural Nets in Electric Fish. MIT Press, Cambridge, MA.

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149:179-193.

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London) 117:500-544.

    Google Scholar 

  • Johnston D, Wu SS (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kandel E, Schwartz J, Jessell T (1995) Essentials of neural science and behavior. Appleton & Lange, Norwalk, CT.

  • Kawasaki M (1997) Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr. Opin. Neurobiol. 7:473-479.

    Google Scholar 

  • Koch C (1999) Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York.

    Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361-374.

    Google Scholar 

  • Land MF, Collet TS (1974) Chasing behaviour of houseflys (Fannia caicularis). J. Comp. Physiol. 89:331-357.

    Google Scholar 

  • Levine M (1998) Models for the cross-correlation between retinal ganglion cells. Biol. Cybern. 79:367-376.

    Google Scholar 

  • Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J. Neurophysiol. 19:2224-2246.

    Google Scholar 

  • Maass W (1996) Networks of spiking neurons: The third generation of neural network models. Neur Networks 10:1659-1671.

    Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuronH1is generated locally and governed by contrast frequency. Proc. R. Soc. Lond. B 225:251-275.

    Google Scholar 

  • Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-1506.

    Google Scholar 

  • Manwani A, Koch C (1999a) Detecting and estimating signals in noisy cable structures: I. Neuronal noise sources. Neural Comput. 11:1797-1829.

    Google Scholar 

  • Manwani A, Koch C (1999b) Detecting and estimating signals in noisy cable structures: II. Information theoretical analysis. Neural Comput. 11:1831-1873.

    Google Scholar 

  • Mastebroek H (1974) Stochastic structure of neural activity in the visual system of the blowfly. Ph.D. thesis, Rijksuniversiteit te Groningen.

  • Mechler F, Victor JD, Purpura KP, Shapley R (1998) Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J. Neurosci. 18:6583-6598.

    Google Scholar 

  • Pollen DA, Andrews BW, Feldon SE (1978) Spatial frequency selectivity of periodic complex cells in the visual cortex of the cat. Vis. Res. 18:665-682.

    Google Scholar 

  • Reich D, Victor J, Knight B (1998) The power ratio and the interval map: Spiking models and extracellular recordings. J. Neurosci. 18:10090-10104.

    Google Scholar 

  • Reich D, Victor J, Kneight B, Ozaki T, Kaplan E (1997) Response variability and timing precision of neuronal spike trains in vivo. J. Neurophysiol. 77:2836-2841.

    Google Scholar 

  • Ritz R, Sejnowski T (1997) Correlation coding in stochastic neural networks. In: Gerstner W, Germona A, Hasler M, Nicaud J-D, eds. Proceedings ICANW 97. Springer, Heidelberg, pp. 79-84.

    Google Scholar 

  • Schilstra C, Hateren JH van (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202:1481-1490.

    Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10:1679-1703.

    Google Scholar 

  • Shadlen M, Newsome W (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4:569-579.

    Google Scholar 

  • Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18:3870-3896.

    Google Scholar 

  • Softky W (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5:239-247.

    Google Scholar 

  • Softky W, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J. Neurosci. 13:334-350.

    Google Scholar 

  • Stevens C, Zador A (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci 1:210-217.

    Google Scholar 

  • Tolhurst D, Movshon JA, Dean A (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23:775-785.

    Google Scholar 

  • Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Ann. Rev. Physiol 61:435-456.

    Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384-387.

    Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202:1491-1500.

    Google Scholar 

  • Vogels R, Spileers W, Orban G (1989) The response variability of striate cortical neurons in behaving monkey. Exp. Brain. Res. 77:432-436.

    Google Scholar 

  • Wagner H (1986) Flight performance and visual control of flight of the free flying housefly (Musca domestica L.) II. Pursuit of targets. Phil. Trans. R. Soc. Lond. B 312:553-579.

    Google Scholar 

  • Warzecha AK, Egelhaaf M (1996) Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil. Trans. R. Soc. Lond. B 351:1579-1591.

    Google Scholar 

  • Warzecha AK, Egelhaaf M (1997) How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Eur. J. Neurosci. 9:1365-1374.

    Google Scholar 

  • Warzecha AK, Egelhaaf M (1999) Variability in spike trains during constant and dynamic stimulation. Science 283:1927-1930.

    Google Scholar 

  • Warzecha AK, Egelhaaf M (2000) Neuronal encoding of visual motion in real-time In: Zanker JM, Zeil J, eds. Visual Motion. Springer, Heidelberg (in press).

    Google Scholar 

  • Warzecha AK, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr. Biol. 8:359-368.

    Google Scholar 

  • Warzecha AK, Kretzberg J, Egelhaaf M (2000) Reliability of a fly motion sensitive neuron depends on stimulus parameters. J. Neurosci. 20:8886-8896.

    Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23:131-137.

    Google Scholar 

  • Wolf-Oberhollenzer F, Kirschfeld K (1990) Temporal frequency dependence in motion-sensitive neurons of the accessory optic system of the pigeon. Naturwiss. 77:296-298.

    Google Scholar 

  • Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79:1219-1229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzberg, J., Egelhaaf, M. & Warzecha, AK. Membrane Potential Fluctuations Determine the Precision of Spike Timing and Synchronous Activity: A Model Study. J Comput Neurosci 10, 79–97 (2001). https://doi.org/10.1023/A:1008972111122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008972111122

Navigation